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ABSTRACT

A numerical study is conducted to study lithium-sulfur hexafluoride (Li-SF 6)

wick -liffusion flames. The objective of this study is to assess the effects of changing the

geometry (height H and aspect ratio H/yo) and ambient conditions (free-stream velocity

u.* and gravity) on the burning rate and heat transfer. Wick combustion is identified as a

boundary-layer gaseous diffusion flame with multiphase combustion products. A

mathematical model for wick diffusion flames is established employing a conserved

scalar approach. Both forced and mixed convective burning conditions are considered.

Laminar, variable-property, boundary-layer equations are cast into dimensionless forms

using the modified Howarth-Dorodnitzyn transformation for vertical plates and cylinders.

The state relationships for the properties are taken from existing data of Li-SF 6

combustion at a pressure of P = 0.01 MPa.

Forced convective burning, for which the Reynolds number (Re = u0 JH/v*) is the

important dimensionless parameter, is studied first. The results show that increasing u.*

increases the total burning rate, rii. A relationship between rh and Re is obtained for both

planar and cylindrical wicks of a given geometry (H = 100 mm, yo = 12.5 mm). The flat-

plate solution yields a fuel mass burning rate per unit surface area (i.e. local fuel burning

rate) following the x-1/2 dependence of the classical similarity solution, where x is the

streamwise distance. This dependence is not evident in the cylinder solution. Cylindrical

wick geometries yield enhanced burning rates over planar wicks.

For the case of mixed convective burning, the burning rate results approach either

the forced or natural convectie burning limits as u. is increased or decreased,

respectively. Critical Richardson numbers (Ri = Gr/Re2) specifying these burning limits

are determined for the given baseline condition. When the wick height is the only

parameter varied, the different curves for the local fuel burning rate, Ih", collapse on one

another, if plotted versus the local Richardson number (Rix). Reducing gravity results in
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a lower burning rate because the influence of natural convection is diminished. Under

microgravity conditions (1/1000th of gravity at sea level), mixed convective burning

nearly resembles forced convection. The results for cylindrical wicks approach the

results for planar wicks as the radius is increased, keeping the height constant. The local

fuel burning rates curves for cylindrical wicks of 50.8 and 100 mm (H/yo = 2 and 1,

respectively) deviate slightly from the curve for a flat plate undergoing the same burning

conditions. In general, cylindrical wick geometries yield enhanced burning rates over

planar wicks.

The major limitation of the present study is that the analysis does not take in

account radiative heat transfer, end effects of a finite wick, and the presence of non-

condensable gases. Further analysis to account for these effects is recommended.
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NOMENCLATURE

Symbol

ag arbitrary gravitational constant

CP specific heat

D binary diffusion coefficient

f dimensionless stream function

g0 acceleration of gravity

Gr Grashof number, Gr = aggoH3(p**/pw- 1)/vO2

H plate height

h heat transfer coefficient

h average heat transfer coefficient

hfg enthalpy of vaporization

k thermal conductivity

rh" local fuel burning rate

rh total fuel burning rate

n arbitrary constant of geometry (n = 1 for cylinder, n = 0 for flat plate)

Nux Nusselt number, Nux = hx/kw

NuH average Nusselt number, NuH = hn/kw

Pr Prandtl number

Re Reynolds number, Re = p*u-/Wp.

Ri Richardson number, Ri = Gr/Re2

Rix Local Richardson Number, Rix = aggox(p**/pw - 1)/u,.2
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Sc Schmidt number

T temperature

u streamwise velocity

v cross-stream velocity

x streamwise direction

y cross-stream direction

Yi mass fraction of species i

Yo radius of cylindrical wick

Z mixture function

TI similarity variable

9x dynamic viscosity

v kinematic viscosity

p density

similarity variable

stream function

Subscripts

cr critical

F fuel

fc forced convection

mc mixed convection

min lower integration limit

nc natural convection

st stoichiometric conditions

w wall condition

00 ambient condition
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CHAPTER 1

INTRODUCTION

A novel liquid-metal combustion system involving the reaction of lithium (Li) and

sulfur hexafluoride (SF 6) is numerically studied. This system (e.g., see Groff and Faeth,

1978) is unique in that it has a high energy density and a high specific energy and that it

yields condensed-phase products under normal operating conditions. The high energy

density and high specific energy satisfy the volume and weight requirements of

propulsion applications and the condensed-phase product provides a means of closed

system operation as desired by deep-sea propulsion vessels; thus the liquid-metal

combustion system is ideal for undersea applications.

The present study is a one-year continuation of the research of Chen et al. (1991).

This report summarizes the research accomplished following that report; namely, on the

computational study of forced convective burning of Li-SF 6 wick diffusion flames.

This Chapter summarizes the literature review and the objectives of the study.

The publications resulting from this Navy sponsored research, i.e., Chen et al. (1991) and

the present study, include Chen et al. (1990 and 1991), Hsu and Chen (1991 and 1992),

Lyu and Chen (1991, 1991a and 1991b), Wu and Chen (1992), Damaso and Chen (1992).

Two doctoral dissertations, Lyu (1991) and Hsu (1991), were supported by this Navy

sponsored research program; and one additional doctoral dissertation, Wu (1991), and

one M. S. thesis, Damaso (1992), were partially supported.

i Combustion

The reaction of Li and SF6 follows the stoichiometry:
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8 Li + SF 6 --+ 6 LiF + Li2S (1.1)

The combustion products (LiF and Li2S) are soluble in liquid lithium, yielding two

immiscible liquids-- fuel-rich and product-rich liquids. The density of the product-rich

liquid is heavier than the fuel-rich liquid (and pure Li), allowing for constant volume

operation. This system is unique in that it has a high energy density and a high specific

energy and that it yields condensed-phase products under normal operating conditions.

The high energy density and high specific energy satisfy the volume and weight

requirements of undersea propulsion systems, as well as space applications. The

condensed-phase product provides a means of closed system operation. Furthermore, Li

is stable (non-reacting), and, at room temperature, is in solid phase. SF6 is non-toxic and

stored as a liquid with a high vapor pressure. The high vapor pressure allows the

injection of SF 6 into the combustor without the need of a pressurizing device. Li and SF 6

thus make an attractive reaction pair for undersea propulsion and space applications.

One major system configuration already studied is the reactive heat pipe (or wick

configuration), e.g. see Lyu et al. (1990) and the references cited therein. When a wick is

employed, liquid Li is supplied through capillary action, and the heat transfer is

accomplished by evaporation and condensation of Li. While the wick stands vertically

during combustion, the buoyancy effects result in natural convective burning along the

surface. However, in space applications, where microgravity conditions exist, buoyancy

effects may be negligible. This leads to the introduction of forced convective burning, i-

which a free stream of oxidant (SF 6 ) is blown past the wick surface to facilitate

combustion. One advantage forced convective burning has is that by varying the free

stream velocity of the oxidant the fuel burning rate can be changed accordingly, thus,
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allowing for changes in heat output of the combustor. Furthermore, forced convective

burning is independent of gravity.

Previous Work

Previous work has been done in the area of convective burning and, in particular,

natural convective burning. Regarding natural convective burning of Li-SF 6 along a flat

plate, Lyu (1991) showed that the local fuel burning rate, rh", is proportional to 4-1/4,

where 4 is the dimensionless streamwise distance. In addition, Lyu obtained similarity

solutions for the planar (flat plate) wick geometry, based on a system pressure of 0.01

MPa and wicks of height (H = 100 mm). Cylindrical wick geometries with radius (yo =

12.5 mm) did not yield similarity solutions. Much of this study is based on Lyu's work

and extends it into the realm of forced and mixed convective burning. Regarding forced

convective burning, Williams (1985) predicted the local fuel burning rate along a

horizontal fuel plate to be proportional to 4-1t2.

Though forced convective burning is ideal for space applications, experimental

research is presently confined to earth, where microgravity conditions do not exist. In

these experiments, both modes of burning--natural and forced--must be accounted for.

Therefore, the study of mixed convective burning gains its significance in relation to

space applications. A major challenge is to perform earth-bound experiments (involving

mixed convective burning) that approximate conditions found in space. To aid in these

experiments, this study presents results regarding mixed convective burning.

This study draws on the work done for natural and forced convective burning, as

well as for mixed convection. Jaluria (1986) did a numerical study on aiding mixed

convective flow (non-reacting) over a heated vertical surface. The study concluded that

natural convection has a major influence in mixed convection. In addition, the study
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found that for large values of the mixed convection parameter, Gr/Re5/2 , the Nusselt

number curves approached the results for pure natural convection. Yao (1985) studied

mixed convection along a vertical flat plate. Yao's paper stated that natural convection

effects are small near the leading edge, and that the forced convection limit is the solution

of the problem at the leading edge. Yao also presented results for heat transfer in terms

of the Nusselt number.

Objectives

As discussed earlier, the wick-type liquid-metal combustor is of interest due to its

use as an energy source for space applications. The overall objective of the present study

is to extend the methodology (developed for lithium-sulfur hexafluoride wick diffusion

flames under natural convective burning conditions) to investigate forced convective and

mixed convective burning of wick diffusion flames. Upon modeling forced and mixed

convective burning, numerical solutions are obtained to assess the effects due to

geometry (cylinder versus flat plate, wick height, aspect ratio) and physical environment

(free-stream velocity of oxidant, gravity) on the wick combustion of Li and SF6 .

Specifically, the objectives of the present study are the following:

(1) To extend the mathematical model developed for wick-type liquid-metal diffusion

flames undergoing natural convective burning to flames undergoing mixed

convective burning.

(2) To obtain numerical solutions to assess the effects due to geometry (cylindrical

versus planar wicks, wick height, aspect iatio) and ambient conditions (free-

stream velocity of oxidant, gravity) on the wick combustion of Li and SF 6 .

(3) To present results that add to the knowledge of earth-bound combustion

experiments performed for varying gravity conditions.



5

CHAPTER 2

THEORETICAL CONSIDERATIONS

The present study employs a conserved scalar approach for wick diffusion flames.

The governing equations and boundary conditions discussed in this chapter are cast into

dimensionless forms employing a similarity transformation. The dimensionless

parameters or similarity variables are helpful in identifying the physical quantities

important to the combustion process.

x

( ) Flame Location
Interface T Boundary Layer

OXIDANTJ

Yo . ag go

(Free Stream)

y

Wick

Figure 2-1. Ile coordinate system.
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Governing Equations and Boundary Conditions

The following analysis extends the modeling of Lyu (1991) to account for purely

forced convective burning (e.g. that at zero-gravity condition) and mixed convective

burning (combined forced and natural convection). Following Lyu et al. (1990), Li-SF 6

wick combustion is assumed as a diffusion flame with infinitely fast chemical reactions.

Steady-state, two-dimensional boundary-layer flows are also assumed. Introducing the

assumptions of unity Lewis number, identical (binary) diffusion coefficients for all

species, no radiative heat lcss, negligible viscous dissipation, uniform interface condition,

a conserved scalar approach can be employed. Such an approach, which combines the

species and energy equations into a single mixture fraction equation, is applied in

modeling diffusion flames when locally kinematic (velocity), thermal (temperature), and

phase equilibria are established in the flow. In this study, mixture fraction is defined as

the effective mass fraction resulting from the fluid supplied through the wick action at

any point in the flow field.

Considering the coordinate system illustrated in Figure 2-1, the governing

equations are

Continuity:

a(puy n) a(pvyn)
ax + ay -0 (2 1)

Momentum:

aau u 1 a a 0 (au2PU + pv = go (p-- p) (2.2)
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Mixture Fraction:

aZ aZ I a 2n. 3ZPu + Pv j=-j ypDr7
;u-X av- =n F-Y- y ) (2.3)

where g. is the gravitational acceleration at sea level, ag is an arbitrary constant for

reduced gravity conditions; e.g. ag = 0 for zero gravity (or pure forced convection) and ag

= 1 for normal gravity (or mixed convection). The superscript "n" accounts for different

geometries, i.e., n = 0 for flat plates and n = 1 for cylinders. D is the binary diffusion

coefficient, and Z is the mixture fraction, i.e., a Shvab-Zeldovich variable (Williams,

1985). The mixture fraction can be viewed as a dimensionless enthalpy (h), or a species

concentration (Y):

hZ h** Ym - Ym* (2.3a)Z-hw - h*. - Ymw - Ym**(.a

Eq. (2.3) uses the conserved scalar, Z, to combine the species and energy equations (Lyu,

1991). The equations for species (2.3b) and energy (2.3c) are

Species:

Puaym+ Pv aYm a (n PDaYm (2.3b)

Energy:

Pu ah + PV a-h --- 1- a-,yn __(2.3c)
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Boundary conditions are specified for no-slip walls. Still environments are

assigned for natural convection conditions, and parallel flow is assigned for forced and

mixed convection.

x=O y=O v=Z=O.

y -+* u = 0 (natural convection)

u = u. (forced and mixed convection)

Z=o

0<x<H y=O u=0,v =vw, Z= 1

0 <x <H y - *o u = 0 (natural convection)

u = u. (forced and mixed convection)

Z=0 (2.4)

where v, is determined (Lyu, 1991) by the heat and mass balance at the interface, and u**

is the free-stream velocity. The formulation presented, i.e., Eqs. (2.1) to (2.4), is for

laminar, boundary-layer reacting flows.

Similarity Transformation

The governing equations are cast into a dimensionless form in terms of the stream

function and similarity variables, using a modified Howarth-Dorodnitzyn transformation.

The transformation has independent variables 4 and I, which are defined as

x
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1/F uY Pydy (2.5)
L -2Hp "(0 or yo) yn

Momentum Equation

The governing equations are cast into dimensionless form, beginning with the

momentum equation, Eq. (2.2). The left-hand side of the equation includes velocities u,

v, and their partial derivatives. The u and v terms are defined in terms of the dimensional

stream function, V, and dimensionless stream function, f.

U 1 (2.6)

v -- (2.7)
p yn ax

where V is given as

nf Yo [24 -ppu.] 1/2 (2.8)

The partial derivative of N, with respect to y is

N,=a"0-N " = (2.9)

The term a/ay is zero because 4 is not a function of y. Evaluating the partial derivatives,

one obtains
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-=- [24Hpp.] I/2 Yon (2.10)

and

0-12 P (2.11)
Yo

Substituting Eqs. (2.9), (2.10), and (2.11) into Eq. (2.6), an expression for u is obtained:

= 
(2.12)

Similarly, an expression for v can be obtained by first taking the partial derivative

of W with respect to x:

-IV ' a4 aw an=0(2.13)

or

0 y - (2.14)
=a [f (2Hp.p.)l/2 Yon]  + ol

Evaluating Eq. (2.14) and substituting into Eq. (2.7), an expression for v is obtained:

SIn(p 12f + 24f + 24H 'f t(.
pyn XJ
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With expressions for u and v derived, au/ax and au/ay must be derived to

complete the evaluation of the left-hand side of the momentum equation, Eq. (2.3). First,

the term au/ax is found:

au = a af (2.16)

or

au r 1 2f [1la2f(
ax +COL ;x n2J

Then, the term au/ay is expressed as

au a af a2f 0(1

or

ia _u y " u* -11/2 a2 f (2.19)F u yn [2 ,Hp** , a-i(219

The terms u(au/ax) and v(au/ay) can now be evaluated.

au 2 af 1 a 2f aii a2 f (2.20)a[Ha a x 5;2J
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au 22 f + 2  -f2 + 2 H R L a21 (2.21)

With the terms on the left-hand side of the momentum equation determined, the

focus of attention now turns to the right-hand side. Multiplying Eq. (2.19) (the

expression for au/ay) by yn and g., and then taking its derivative with respect to y, one

obtains the right-hand side of the momentum equation:

y a au I a n '

y n ,,y y n y  (2.22)

and

1- nI u  u2 pit (y o n 2f

- a [ y(.L ,7- (2.23)
yn24H Z ~p Y) c 2

The nondimensional form of the momentum equation is nearly complete. Setting the left-

and right-hand sides of the momentum equation equal to each other, one obtains

2F1 a 2 f +0,2f1 @f pu*2[ f2f+2 f 2f + 24H anl'f 2 f]

pu- 2 Pp. a2f1 + aggo(p-p) (2.24)

Equation (2.24) can be simplified by multiplying both sides by (2H)/(pu.*2), and by

expressing the first and second derivatives of f (with respect to 71) as f and f",

respectively. The transformed momentum equation becomes
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nf + + L aqg JH(p -p) =2 ( f L f ff)(2.25)

The buoyancy term on the left-hand side can be expressed in terms of Grashof number,

Gr, and Reynolds numbers, Re. These dimensionless parameters are defined as

a'qg 0H3(pjpw -1)
Gr = a°(2 (2.26)V**2

Re = u(2.27)
V00

where v.0 = ,,Jp.. Substituting the expressions for Gr and Re into the buoyancy term,

one obtains

2 4aggoH(p**-p) . (p*- - Pw)/Pw H2 V.2 Gr (p - p)/p (2.28)
P1100 (P.. - Pw)/Pw -H2 C2~ e P)/Pw

This buoyancy term can be expressed in terms of the Richardson number, which is the

ratio of natural to forced convection (buoyancy to inertial forces), and is defined as

Gr
R1e2

Ri - Re (2.29)

The final form of the transformed momentum equation is

p~ ,p t ,yj (y n)(Pc-'P)/Pw (f, '
(P (Y ff'+2Ri (P -P)/Pw - =- (2.30)
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Mixture Fraction Equation

In a similar fashion, the transformed equation for mixture fraction, Z, can be

derived. On the left-hand side of Eq. (2.3), u and v are already known. Taking the

derivatives of Z with respect to x and y, one obtains

az azaii + Z1 aZ1 (2.31)

and

aZ az al l zr uat yn
aY n + 'a4Y'=-L2,-u 11i 2 p r (2.32)

Yo

Upon substituting Eqs. (2.31) and (2.32) and the expressions for u and v, the left-hand

side of Eq. (2.3) becomes

pu +pv :poof[ +i
aof -z r f an . z 7

_yu a-t 0 ,u/ + 1 Zr T Uoof_ T.r-f

" X!~ H P-01012f + 2" a+ 24H af x1 Ja'i2/2ppi(2.33)

nZ D_~f - Tx n
or(

pu )a-u fa u L u fa (2.34)D- ay -H a4 2411 on H at -an
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Similarly, the right-hand side terms of Eq. (2.3) can be derived. Multiplying DZ/ay by yn,

p, and D, and then taking the derivative with respect to r, the following equation is

obtained:

1 "n Z' 1_____-Zr u* 11/2 yn 11
"- O Z = I'y)" yn DL Z[ u- 91i P n)0 (2.35)

Yo

where the binary diffusion coefficient, D, is expressed in terms of the Schmidt number,

Sc, such that

D 1 1 t (2.36)Sc p- Pr

The unity Lewis number assumption (Sc = Pr) is invoked in the above equation to express

D in terms of the Prandtl number, Pr. Substituting this result into Eq. (2.35) and

performing some manipulations, the right-hand side of the mixture fraction equation

becomes

1 ('naZ'pu** [ np _yn L (2.37)
apotz 

Pryf a [JgZyn;-Yy p y)-24Hdrq p.,.Pryn G

The left- and right-hand sides of the mixture fraction equation are equated to obtain the

final form of the trans;ormed mixture fraction equation.

S ,. (Pr f kYo = - (2.38)
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The boundary conditions are specified, satisfying the non-slip wall and uniform-

flow ambient conditions:

>0 Tj =0 f=fw,f =O,Z= 1

TI -- 00 f' = 1,Z=0. (2.39)

The solution at = 0 is found by setting 4 to zero for the right-hand sides of Eqs. (2.25)

and (2.38). Similarity solutions are obtained at =0.

Fuel Burning Rate

An expression for the fuel burning rate per unit surface area can be derived from

the expression (see Lyu, 1991) for the wall velocity, Vw,

kw I a~YF"'az -0T
Vw- Z TY -w (2.40)PwCpw YFw - 1-(

where C is evaluated by

a = u2 1 (2.41)

Substituting the above equation into Eq. (2.40), vw becomes

Vw = kww YFwl aZ Pw [2 Hpo 2  (2.42)pwCpw YFw-1 'Z h 2Efl-I,
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The term Lis multiplied by and - to yield an expression that includes the
L24Hp~iH POO

Reynolds number, Re, based on height H. The equation for the local fuel burning rate

then becomes

lil P~v -1 pwkw I _Re-1/2 DY'7- aZ (.3" -pwVw 1 e(2.43)

The local fuel burning rate is integrated over the entire wick surface to obtain the total

fuel burning rate, given by the following equation:

rh = H (1) f rh" dt (2.44)

where the surface area considered is the product of the height H and unity (1), regardless

of geometry. This is done so that the total fuel burning rates for both cylindrical and

planar wicks can be compared.

Heat Transfer

In addition to the fuel burning rate, an important parameter to heat transfer is the

Nusselt number, Nu. The local Nusselt number is defined as

hx
Nux = hw x(2.45)

where h is the convective heat transfer coefficient. The convective heat transfer

coefficient is obtained by assigning a characteristic temperature difference which, in the
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present study, is defined to be Tst-Tw, where Tst is the stoichiometric temperature and Tw

is the wall temperature. The heat transfer rate is obtained by multiplying the enthalpy of

fuel vaporization, hfg, with the fuel mass burning rate, fii The heat transfer coefficient

can then be defined as

h =/A rh" f (2.46)h AT Tst-Tw

where rh" is the fuel burning rate per unit surface area. The local Nusselt number is

Srh"fg H (2.47)
Nux -kw (Tst-Tw)

The average Nusselt number, NuH, over the surface of the wick is defined by

h hHNuH - w (2.48)

where h is the average convective heat transfer coefficient:

h=- fh dAs  (2.49)
;S A.

In general. the wick surface, As, is expressed as

As = H (2nyo)n f d4 = H (2ryo)n . 1 (2.50)
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where n is 0 for a flat plate and 1 for a cylinder. The derivative of As is taken with

respect to 4 to obtain an expression for dAs:

dAs = H (2jCyo) n dt (2.51)

Equations (2.46), (2.50), and (2.51) are substituted into Eq. (2.49):

1 f nH n(2nyo)n d4 (2.52)
H (27ryo)n Tst-Tw

Simplifying Eq. (2.52), one obtains

= H (Tst-Tw)hf f rh" d (2.53)

or

= rhhf (2.54)H(Tst-T w )  (.4

Finally, substituting Eq. (2.54) into (2.48), one obtains the expression for the average

Nusselt number.

Trh 
(2.55)

NUll = kw (Tsr-Tw) (.5
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CHAPTER 3

NUMERICAL SOLUTION PROCEDURE

This chapter describes the procedure used to obtain numerical solutions to the

governing equations. The procedure is centered around a computer program that solves

the transformed governing equations. The code requires that the state relationship for Li-

SF 6 combustion be specified. The computer program used in this study was modified

from Lyu (1991) to handle mixed convective burning.

To obtain solutions to the governing equations, the state relationship, e.g. p =

p(Z), must be specified. The state relationship was obtained from the equilibrium

calculation employing the NASA code with thermodynamic properties of Li2S estimated

from Groff (1976). As one example, the state relationships for temperature and density,

taken from Lyu (1991), are shown in Figure 3-1. (The reader should note that the figures

are at the end of the chapter.) All the state relationships used in the flow calculations are

tabulated in Appendix A, c.f. Table A-1. Note that the interface temperature corresponds

to Z = 1. These state relationships are based on the converged interface condition (P =

0.01 MPa, YFw = 0.38), and are used in the present study to obtain the fuel burning rates

at 0.01 MPa.

The flow calculation program used by Lyu (1991), which is for natural convective

burning, was modified to account for forced convective burning, following the approach

of Chen and Faeth (1981). The modifications to Lyu's code underwent several steps.

First, the code was converted to pure forced convective burning. Gravity was no longer

considered (i.e., ag = 0). Certain coefficients in the transformed governing equations

were changed, as well as the boundary conditions. The program was tested for a flat
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plate, using constant properties and neglecting wall blowing effects. The Blasius solution

was obtained, as shown in Figure 3-2.

The code was then modified to handle mixed convective burning. A listing of the

FORTRAN computer code is included in Appendix A. The flow calculation program

utilizes a finite difference scheme (Keller box method) in solving the governing equations

at specified boundary conditions (Cebeci and Bradshaw, 1977). A marching procedure is

used to obtain the solution along the streamwise distance. The computation employs 82

and 600 nodal points in the i and directions, respectively. Variable grid sizes are used

for both directions. The first 100 grid points are spaced 1 x 10-5 apart, and then spaced

2 x 10-3 apart for the remaining 500 grid points. The Tj grid points are separated by a

value Al, which grows with each successive grid generated; each successive value of Ai

is multiplied by a factor of 1.05 as the grid is generated from the surface (i.e., 710 = 0, 7i1

= I x 10-2, Ar 2 = 1.05 • 1 x 10-2, A13 = 1.052 . 1 x 10-2, ... , i = 1.0 5 i-l . 1 x 10-2).

This allows for a more dense grid near the surface and a less dense grid farther from the

surface.

In the process of achieving grid independence, the nodal mesh required

refinement due to the results of the calculations for the local fuel burning rate; the results

shows some peculiarities. Specifically, instead of decreasing "uniformly" along the

distance of the surface, the local fuel burning rate showed a "stepping" decrease along the

streamwise distance. Figure 3-3 illustrates the stepping phenomenon in more detail.

Further investigation of the stepping change found that, in the equation for the local fuel

burning rate, the gradient of the mixture fraction was fluctuating.

The stepping change was reduced when the grid size along the wick surface was

refined. Figure 3-4 shows the results of how varying the grid size in the 4 direction

affects the mixture fraction gradient at the wall, Z'lw, which consequently affects the

value for the local fuel burning rate; refer to Eq. (2.43). Four grid sizes were
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investigated, corresponding to 254, 504, 600, and 1000 nodal points in the q-direction.

The first case, which used 254 nodal points in 4-direction, is the same grid Lyu (1991)

used. The first five grid points were variably spaced, while the remaining 249 grid points

were spaced 4 x 10-3 apart, beginning at 4 = 4 x 10-3. Since the stepping changes seemed

more pronounced near the leading edge ( < I x 10-3) and since the boundary layer

thickness changes more rapidly near the leading edge, more attention was given to this

area of the domain. In the second case for 504 nodal points, sizes of the first four grids

(first five nodal points) were reduced to one-fourth the size of those in the first case.

Beginning at = 1 x 10-3, the remaining 500 nodal points were spaced uniformly by a

distance of 2 x 10-3. The third case involved dividing the region of 4 < 1 x 10-3 into 99

grids of size 1 x 10-5 (100 nodal points). Finally, in the fourth case, 1000 nodal points

were employed: 500 nodal points spaced 2 x 10-6 apart (4 < 1 x 10-3) and 500 nodal

points spaced 2 x 10-3 apart (4 > 1 x 10-3).

The error in calculating the local fuel burning rates can be estimated from the

results for Zw. For the case of forced convective burning (Re = 3800) along a flat plate,

the fluctuation ranges from a minimum of -1.7 to a maximum of -1.85, resulting in a

maximum difference of about 8%. The results are shown in Figure 3-5. The maximum

fluctuation occurred immediately after , = 0.001, where the grid spacing jumped from 1 x

10-5 to 2 x 10-3.The fluctuation can be damped out by refining the grid. In using 2000

grid points with variable grid spacing (An = 1.005 • A~n.1), Figure 3-6 shows little

variation in Z' at the wall. Indeed, the value for Z' at the wall andrh" are sensitive to the

grid scheme used, but the total fuel burning rate, h, is not effected after grid

independence is achieved. The calculated total fuel burning rates for the cases of 600 and

2000 grid points differed by less that 1%.

The total fuel burning rates were obtained by performing a numerical integration

of the local values along the surface, from min to 1, using Eq. (2.44). Simpson's rule was
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used for the integration (Weltner et al., 1986). The total fuel burning rate was calculated

for different values of 4min. The lower integration limit was chosen to be 104 , using the

results shown in Figure 3-7 for forced convective burning along a flat plate. Between

4min = 10-3 and 104 , there is a 0.42% change. A 0.26% change occurs between 10 4 and

10-5.
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Figure 3-1. State relationship of temperature and density of Li-SF6 wick combustion
YFw = 0.38, taken from Lyu (1991).
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Figure 3-2. Blasius solution.
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Figure 3-3. Stepping phenomena illustrated: local fuel burning rate along planar wick
surface, forced convective burning, Re-3800 (u.=l m/s, H=100 mm, ag = 0).
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Figure 3-4. Fluctuations of mixture fraction gradient at the wall for various grid
schemes: 2.54, 504, 600, 1000 nodal points (4-direction).

-1.6
Forced Convective Burning

Li-SF 6
Flat Plate

- 1. "/ \P = 0.01 MPa

-1.8

-.- 1.8

-2 .0 . . . . . ' . . . .t , , , , . .

.0001 .001 .01 .1 1
Dimensionless Streamwise Distance

Figure 3-5. Semi-log plot of fluctuation of mixture fraction gradient at the wall, forced
convective burning along a flat plate, Re=3800; 600 nodal points (4-direction).
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Figure 3-6. Semi-log plot of fluctuation of mixture fraction gradient at the wall, forced
convective burning along a flat plate, Re=3800; 2000 nodal points (a-direction).
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Figure 3-7. Determination of minimum integration limit from total fuel burning rate.
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CHAPTER 4

RESULTS AND DISCUSSION

Though presenting the results for mixed convective burning is the main objective

of this study, examining forced convective burning offers valuable insight into mixed

convective burning. Through a parametric study, this chapter examines forced and mixed

convective burning of Li-SF 6 wick diffusion flames. Both wick geometry and ambient

conditions are examined for their effects on burning rates. Cylindrical wick geometry is

emphasized, since it yields enhanced burning rates. The parameters varied in the study of

mixed convective burning are the free-stream velocity of the SF6 oxidant (u,.), the wick

height (H), the gravity (ag), and the aspect ratio (height/radius).

Forced Convective Burnin

Mixed convective burning combines both natural and forced convection. To

develop a better understanding of mixed convection, one may view its components

separately, investigating the burning characteristics associated with each component. In

this section, the results for forced convective burning (ag = 0) are presented for both

planar and cylindrical geometries. In the study of forced convective burning, the

parameter subject to variation is the free-stream velocity, u.; however, the results are in

terms of the Reynolds number, as de:fined by Eq. (2.27), based on the wick height, H.

Other parameters, such as wick height and gravity, remain constant in the study. The

wick height is 100 mm, and ag is 0. For cylindrical wicks, the radius is fixed at 12.5 mm.

The system pressure considered in the computation is 0.01 MPa. The state relationships
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and interface condition were obtained from Lyu (1991). The interface had a lithium mass

fraction of 0.38 and a temperature of 1340 K.

Local fuel burning rates for planar and cylindrical wick diffusion flames are

calculated by Eq. (2.43). The results are presented in Figures 4-1 and 4-2 for Re ranging

from 3800 (u. = 1 m/s) to 190,000 (50 m/s). A 4-1/2 dependence is observed for the

planar case. The results for the cylindrical case deviate from the -1/2 dependence,

however, due to the curvature effects. The fuel burning rates for natural convective

burning (flat plate and cylinder) under the same ambient and geometry conditions (i.e., P

= 0.01 MPa, H = 100 mm, and yo = 12.5 mm) are also graphed for comparison. In

contrast to forced convective burning, natural convective burning of a Li-SF 6 wick

diffusion flame shows a 4-0.25 dependence for flat plates and a 4-0.18 dependence for

cylinders (Lyu, 1991).

The 4-1/2 dependence is typical for the heat and mass transfer across laminar

forced convection boundary layers (Williams, 1985). For wick diffusion flames, the 41/2

dependence of vw is a sufficient and necessary condition for the right-hand side of Eqs.

(2.30) and (2.38) to vanish, i.e. fw = constant. The mathematical derivations are included

in Appendix B. The solution yields similar profiles for f, f', f", Z, and Z' at different

streamwise locations when the similarity variables are employed. Figure 4-3 shows a

representative sample of similarity profiles of the dimensionless streamwise velocity, f'.

When curvature effects are considered, an additional factor, (y/yo)2 , appears in the

diffusional transport term. The local fuel burning rates of cylinders deviate from the 4-1/2

dependence of flat plates for > 0.001. Similarity solutiors are not obtained in the case

of the cylindrical wick due to the curvature term. Overall, the fuel burning rates for the

cylinder are slightly higher than those for the flat plate. According to Lyu and Chen

(1991), under natural convective burning conditions the curvature effect on W' becomes

important when yo o H, or when needle-type cylinders are considered. In addition, as the
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cylinder's radius is increased (keeping the height constant) tn" is observed to approach the

flat plate solutions. For example, when the cylinder radius Yo increased to 50.8 mm (H =

100 mm), the local fuel burning rate of an ethanol-air wick diffusion flame approaches

that of a planar geometry (Lyu and Chen, 1991). Similar behavior is observed in the

present study of Li-SF 6 wick diffusion flames. Using the same wick dimensions as Lyu

and Chen (1991), the total fuel burning rates for Li-SF 6 cylindrical wick diffusion flames

under forced convection conditions approach the results of a flat-plate wick geometry.

The total fuel burning rates, i, were calculated using the corresponding local fuel

burning rates calculated for various Re. This was done by performing a numerical

integration over the height of the wick surface. As discussed earlier, Simpson's rule was

used (Weltner et al., 1986), with the lower integration limit, 4min, set at 0.0001. The

results for the planar and cylindrical cases are shown in Figure 4-4. The total fuel

burning rates for the cylindrical flames are higher than those for the flat plate flames; in is

proportional to ReO5 and Re0 "33 for the flat plate and cylinder, respectively. These

relationships are true for the parameters specified. The total burning rate's dependence on

Re changes if a different wick geometry is considered.

Mixed Convective Bu'ning

The results from the previous section are for pure forced convective burning, i.e.,

ag = 0; buoyancy effects are neglected, and Gr is set to zero. In reality, however, low

gravity can be expected even in experimental conditions, such as in a space station, where

typically 0 < ag < 0.01. Furthermore, during the technology development for liquid-metal

wick burners, buoyancy effects will be present in earth-bound experiments. At these

conditions, mixed convective burning needs to be examined, as to extrapolate the data

base for space applications.
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The following section examines the effects of changing particular parameters on

mixed convective burning. These parameters are the free-stream velocity (u.,), the wick

height (H), the arbitrary gravitational constant (ag), and the aspect ratio (H/yo). The

results for changing the free-stream velocity are expressed in terms of Richardson

number, Ri, instead of u,., for sake of clarity. The effects on the burning rates and heat

transfer for both cylindrical and planar wick geometries will be highlighted.

Free-stream Velocity

Mixed convection combines both natural and forced convection. The important

parameter used in mixed convection is the Richardson number (Ri), which is the ratio of

natural to forced convection. As stated earlier in Eq. (2.29), Ri is defined as

GrRi-Re2

Ri can be stated more simply by considering the definitions of Gr and Re and then

dividing and eliminating terms. The following expression for Ri is obtained:

Ri = '(P- -w (4.1)

From Eq. (4.1) one can notice that Ri decreases as u. is increased by a power of 2. In

this computation, the other parameters are fixed (ag = 0 and H = 100 mm).

In mixed convective burning, forced and natural convection take turns dominating

along the height of the plate. Near the leading edge, forced convection dominates.

Figures 4-5 and 4-6 illustrate this phenomenon using the dimensionless streamwise

velocity profiles (f vs. I). At = 0 of a flat plate, the maximum velocity is the free-
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stream velocity for Ri = 34 (u. = 1 m/s). But as the flow moves downstream, buoyancy

effects come into play. The maximum velocity increases as increases, since the

buoyancy forces are in #he same direction as the flow. At the trailing edge the peak

velocity is almost six times the free-stream velocity. The trends are similar to those

obtained for aiding mixed convection flow over a vertical surface (Jaluria, 1986). These

trends are also observed in the case of the cylinder. The peak velocity at I = 1 is over

five times greater than the free-stream velocity.

auming.Rat

Results for the local fuel burning rates (rh") show that, as Ri approaches zero

(u**--*), the results approach those for forced convective burning. Figures 4-7 and 4-8

show the results for natural, forced, and mixed convective burning along planar and

cylindrical wicks, respectively. The flat plate results suggest that there exists a critical Ri

beyond which iii" approaches the 4-1f2 dependence in the near-leading edge region, or , <

0.01, and approaches the 4-1/4 dependence for 4 > 0.01. The Grashof number, Gr,

defined by Eq. (2.26), remains the same (Gr = 4.93 x 108) for all the cases involving

mixed convection. The total fuel burning rates for the burning curves of Figures 4-7 and

4-8 were calculated, and the results are shown in Figure 4-9. Overall, the values for the

cylinder are greater than those for the flat plate. The decrease in the total fuel burning

rate (i) as Ri increases is due to the diminishing contribution of forced convection. As

mentioned earlier, Ri increases as u. decreases. For forced convective burning, the total

fuel burning rate decreases as u** decreases. Furthermore, the total fuel burning rates for

mixed convective burning are higher than those for forced convective burning. As an

example, for u. = 10 m/s (cylinder), rhmc is 7.4 x 10-4 kg/s, compared to 6.9 x 10-4 kg/s

for rhfc.
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The question of whether the results for forced and natural convective burning can

be used to approximate mixed convective burning is answered by the results tabulated in

Table 4-1. As the previous figures showed, for the region near the leading edge, the

mixed convective burning curve approaches that of forced convective burning. For the

region closer to the trailing edge, the curve approaches that of natural convective burning.

One may think that an additive relationship among the different modes of burning might

exist; that is, flhmc = inf¢ + riinc. The burning rate calculations summarized in Table 4-1,

however, indicate that such an additive relationship does not exist.

Despite the fact that an additive relationship does not exist among the burning

rates, for certain "critical" values of Ri, mixed convective burning can be approximated

as either forced or natural. These critical values of Ri are found by plotting the ratio of

fuel burning rates (natural-to-mixed and forced-to-mixed) versus Ri for cylindrical and

planar wicks. This is done in Figures 4-10 and 4-11. For a planar wick of height 100

mm, Ricr is 0.013 for forced convective burning and 155 for natural convective burning.

Likewise, for a cylindrical wick of height 100 mm and radius 12.5 mm, Ricr is 0.028 for

forced convective burning and 160 for natural convective burning. The critical Ri for

natural convective burning found in this study agrees with other work done. Using a 1%

criterion to compare Nu for natural and mixed convection, Yao (1985) determined the

value for Ricr,nc to be 500--the same order of magnitude as the one determined in this

study--for a semi-infinite vertical flat plate undergoing mixed convection heat transfer.

These results are intended to assist those performing earth-bound experiments related to

space applications. For the given geometry (H = 100 mm and Yo = 12.5 mm), the total

fuel burning rate for forced convective burning can be approximated using the results

from mixed convective burning at the critical Richardson number, Ricr,fc, with an

uncertainty of 1%. These critical Ri change when considering different wick sizes.
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Heat Transfer

In terms of heat transfer and the local Nusselt number, Nux, the results can be

represented using Eq. (2.45). The value of Nux is based on the difference of the

temperatures at the wall (1340 K) and at stoichiometric conditions (3120 K); refer to

Figure 3-1. The results are presented graphically in Figures 4-12 and 4-13. Equation

(2.45) shows that Nu. is proportional to 4 to some power, which depends on the

relationship between the local fuel burning rate and 4. For forced convective burning, in

which inf' is proportional to 4-1/2, Nux is proportional to 41/2. Similarly for natural

convective burning, in which rh" is proportional to 4-1/4, Nux is proportional to 4314. For

the case of the flat plate (Figure 4-12), such relationships can be seen. For the curve (Ri

= 0.013, forced convection dominant), the slope is approximately 1/2. For Ri = 115,

natural convection dominates near the trailing edge, where the burning curve has a slope

of approximately 3/4. This observation on the calculated Nusselt number agrees with that

of Yao (1985), which stated that in mixed convection the buoyancy force accelerates the

flow near the surface and consequently thins the boundary-layer; thus, a higher heat

transfer rate is obtained at downstream locations. The average Nusselt numbers, defined

by Eq. (2.55) are calculated and the results are shown in Figure 4-14. Similar to the total

burning rates, the average Nusselt numbers increase as Ri decreases.

Already being investigated as a heat source in undersea propulsion systems

(Hughes et al., 1983, and Lyu et al., 1990), Li-SF 6 wick combustion has the potential of

being used in space applications. For instance, the auxiliary power generation system for

the Space Station could utilize a combustor consisting of a number of cylindrical wicks

undergoing forced convective burning. The heat output could be controlled by either

varying the free-stream oxidant velocity or changing the number of wicks used. For the

first case in which u. is varied, a relationship between the heat output (per wick) and Re

needs to be determined. Such a relationship has been determined already for a cylindric
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wick considered in this study (H = 100 mm and Yo = 12.5 mm). For the second case, in

which the wick dimensions and free-stream velocity are fixed, the heat output of a

cylinder ,'ds to be calculated. Consider, for example, one cylindrical wick (0.1 m in

height, 0.0125 m in radius) under forced convective burning conditions (P = 0.01 MPa,

u. = 10 m/s). The predicted total fuel burning rate for this case is 5.4 x 10-6 kg/s. If one

kilogram of Li is assumed to yield 57,400 kJ of energy (Lyu, 1991), then the heat output

of one cylinder is 0.31 kW. A power system requiring a 5-kW heat source would need 17

of these wicks considered.

Wick Height

It would be of interest to see how the fuel burning rates vary with changes in wick

height. The previous calculations have been based on a wick height of 100 mm. When

considering mixed convective burning along wicks of different heights, one must keep in

mind the appropriate length scales. Because of this, the results for the local fuel burning

rates are plotted versus the local Richardson number, Rix, which is defined as

Rix= aggH(p- (4.2)

instead of the dimensionless streamwise distance, 4. Figures 4-15 and 4-16 show this

trend for local fuel burning rates. For both planar and cylindrical wick geometries, the

burning curves overlap one another, unlike the previous cases. The curve for the shortest

height (H = 0.01 m) corresponds to the lowest range of local Richardson numbers--

roughly, less than Rix = 1. The curve for H = 0.1 m spans across the highest range of Rix.

When the total fuel burning rates are calculated for the given range of heights, a

relationship is observed between rh and Ri. For the flat plate, rh is proportional to Ri
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For the cylinder, rh is proportional to Ri 0 "77 . Figure 4-17 shows the total fuel burning

rates. These relationships are limited to the conditions considered (u. = 1 m/s, ag = 1, Yo

= 12.5 mm) and are expected to change for different conditions. The graph indicates that

increasing the wick height (greater Ri) increases the total fuel burning rate. This is to be

expected since a taller wick means more surface area, thus, a higher burning rate.

Furthermore, cylindrical wicks are observed to yield higher total burning rates over

planar wicks.

Gravity

The effect of gravity on mixed convective burning is studied by varying the value

of ag. The gravity conditions are changed by setting ag at a value between 0 and 1; i.e., 0

<g < go, where go is the gravity at sea level. The burning rate calculations are performed

for ag = 1, 0.5, 0.1, 0.01, and 0.001. Typical gravity in an environment like the Space

Station would have an ag of less than 0.01. In the calculations, the other parameters, H

(100 mm) and u (1 m/s), remain fixed. The local fuel burning rates for flat plate and

cylinders are presented in Figure 4-18 and 4-19. The curves for natural and forced

convective burning are also graphed for comparison. Since gravity is a parameter that

affects natural convection only, the local fuel burning rates are approximately the same

near the leading edge (4 < 0.001), where forced convection dominates. Moving

downstream, the curves diverge; the curves corresponding to smaller values of ag

approach the forced convective burning limit because the relative influence of natural

convection diminishes. The buoyancy forces are not as strong because of the decrease in

gravity.

The total fuel burning rates for planar and cylindrical Li-SF 6 wick combustion are

calculated and presented in Figure 4-20. As expected, the total fuel burning rates are
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higher for cylindrical wick geometries than for planar wicks. Overall, for mixed

convective burning with variable gravity conditions, the values of rh approach those for

forced convective burning. At ag = 0.001, the total fuel burning rate is 1.46 x 10-3 kg/s

(flat plate) and 3.41 x 10-3 kg/s (cylinder); the corresponding total fuel burning rates for

forced convective burning are 98.4% (flat plate) and 99.6% (cylinder) of their

corresponding mixed convective burning rates at ag = 0.001 (Ri = 0.034). Thus, the

burning rates for mixed convective burning approach the forced convective burning limit

as ag is decreased.

Aspect Ratio

As mentioned earlier in the section dealing with forced convective burning, the

results for the total fuel burning rate (cylinder) approach the results of a flat plate as the

radius is increased, keeping height fixed. To determine at what point increasing the

radius would no longer affect the burning rate, the ratio of the total burning rates

(cylinders of different aspect ratios compared to the flat pla:e solution) are plotted versus

aspect ratio in Figure 4-21. The aspect ratio is defined as the wick height divided by the

radius, H/yo. As the aspect ratio is decreased (increasing radius), the total burning rate

approaches the value of the flat plate solution. In the case of forced convective burning,

an aspect ,atio of less than 0.125 means the total burning rates for cylindrical and planar

wicks differ by 1%. For mixed convective burning, the total fuel burning rates for

cylindrical and planar wicks differ by 1% for an aspect ratio of 0.25. Figure 4-22 shows

the local fuel burning rates for cylindrical wicks of radius 12.5, 50.8, and 100 mm, as

well as the corresponding flat plate solution (yo --+ -). The curve for yo = 12.5 mm

deviates significantly from the flat plate solution; however, the curves for the other two

cylindrical cases deviate only slightly from the flat plate solution. These results are

similar to those found by Lyu and Chen (1991) for ethanol-air wick diffusion flames.
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Figure 4-4. Predicted total fuel burning rates of flat-plate (H 100 mm) and cylinder
(H = 100 mm, yo = 12.5 mm) Li-SF 6 wick diffusion flame as functions of Re.
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Figure 4-9. Predicted total fuel burning rates for flat-plate (H = 100 mm) and cylinder
(H = 100 mm, Yo = 12.5 mm) Li-SF6 wick diffusion flame as functions of Ri;

ag = 1.0, Gr = 4.93 x 108.

Table 4- I. Comparison of total fuel burning rates (kg/s) for cylinder
(H = 100 mm, yo = 12.5 mm).

Ri rhnc mnfc thnc + infc mmc % Difference

34 0.00035 0.00014 0.00049 0.00037 32

2.1 0.00035 0.00029 0.00064 0.00042 52

0.36 0.00035 0.00045 0.00080 0.00052 54

0.037 0.00035 0.00079 0.0011 0.00081 36

0.013 0.00035 0.0010 0.0014 0.0010 40
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Figure 4-11. Critical Richardson numbers for natural and forced convective burning
limits (99% accuracy); cylindrical Li-SF 6 wick diffusion flame;

H = 100 mm, y( = 12.5 mm, ag = 1.0. R1(rtc = 0.028 and Rk-,mc = 160.
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Figure 4-13. Predicted local Nusselt number for cylinder U-SF 6 wick diffusion flame;
H = 100 mm, yo = 12.5 mm, ag = 1.0.
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Figure 4-15. Effect of varying wick height on local fuel burning rate for planar wick
(H =0. 1,0.05, 0. 0 1); u.= I m/s, a3*= 1.
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Figure 4- 17. Predicted total fuel burning rate of Li-SF 6 wick combustion as function of
R i (H = 0. 1, 0.075, 0.05, 0.025, 0.01 i); y. = 12.5 mm, Li. = Ilm/s, ag = 1.0.
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Figure 4-19. Effect of varying arbitrary gravitational constant a on local fuel burning
rate for cylindrical wick (a = 1, 0.50. 1, 0.01, 0-I)0:

H = 100 mm, yo = 1E5 mm, u. = I m/s.
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Figure 4-20. Predicted total fuel burning rates of planar and cylinder Li-SF6 wick
diffusion flames as function of Ri (ag = 1, 0.5, 0.1, 0.0 1, 0.00 1);

H= 100 mm, yo= 12.5 mm, u. lm/s.
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Figure 4-2 1. Ratio of total fuel burning rates (cylinder to flat plate) versus (H/y 0 );
variable radius. u. = I mrs, H= 100 mm, a = 1; forced and mixed convective burning of

Li-SF6 Wick Jiffusion flames.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The objective of this study is to extend the methodology (developed for Li-SF6

wick diffusion flames under natural convective burning conditions) to investigate forced

and mixed convective burning of Li-SF 6 wick diffusion flames. A conserved scalar

approach is employed to model the wick diffusion flames, and the interface condition is

determined by the conservation of mass, species, and energy at the interface.

Computation is first done for forced convective burning of Li-SF 6 wick diffusion flames

and then extended to mixed convective burning. A limitation of the present analysis

comes from the employment of boundary-layer approximations. The analysis, in essence,

considers a semi-infinitely long wick. The end effects of a finite height wick are not

considered.

In the process of obtaining numerical results, the computer code from Lyu (1991)

was modified to calculate the local fuel burning rate. The code utilized the state

relationships based on the converged interface condition (P = 0.01 MPa, YFw = 0.38),

which were already calculated by Lyu (1991), using the NASA CEC equilibrium code

(Gordon and McBride, 1976). The computer program used a finite-difference scheme

and marching procedure to solve the transformed governing equations. The numerical

grid employed 600 points in the 4-direction and 82 points in the 1" -direction. The total

fuel burning rates were calculated using Simpson's rule of numerical integration over the

length of the wick surface (from tmin = 0.0001 to t = 1).

Flow calculations involving forced convective burning were performed for both

planar and cy!'.idrical wick geometries. Similarity solutions were obtained for flat-plate
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Li-SF 6 wick diffusion flames, i.e.,rh" ,1/2. Because of curvature effects, however,

nonsimilar solutions were obtained for cylinder Li-SF 6 wick diffusion flames. In general,

cylindrical wicks enhanced the burning such that the total fuel burning rates were higher.

Flow calculations were then done for mixed convective burning. The results for the local

fuel burning rates showed that forced convection dominates near the leading edge and

natural convection over the rest of the surface The results indicated that natural

convection has a large contribution to mixed convective burning.

A parametric study is done on the effects of varying the free-stream velocity (u.),

the wick height (H), and the gravity (ag) on the fuel burning rate. The starting values for

each parameter were 1 rn/s for u*., 100 mm for H, and 1.0 for ag. Each calculation was

done for both planar and cylindrical wick geometries. The effect of increasing u** was to

increase the local fuel burning rates. For the planar case, as u. was increased, the

burning curves were observed to have forced convective burning characteristics, i.e., rh"

- 4-1/2. Upon further investigation, critical Richardson numbers were found for a given

geometry and gravity condition (H = 100 mm, yo = 12.5 mm, and ag = 1.0); these

numbers indicate when mixed convective burning can be approximated by either forced

and natural convective burning. When the wick height H was decreased from 100 mm to

10 mm, the total burning rates were observed to decrease. A relationship between the

total fuel burning rates and log Ri was obtained for both flat plates and cylinders. The

local burning curves for different heights overlap one another when the burning rate is

plotted versus the local Richardson number. When the gravity was decreased from 1.0 to

0.001, burning rates also decreased. The values of the local fuel burning rates near the

leading edge, where forced convective burning dominates, remained relatively

unaffected; however, downstream, where natural convection dominates, the local burning

rates decreased noticeably due to the lower gravity, which resulted in smaller buoyancy

forces. As ag was decreased, the burning rates approached the forced convective burning
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limit. Regarding the aspect ratio, the fuel burning rates for cylindrical wicks (both forced

and mixed convective burning) approached the results for planar geometry. In the case of

mixed convective burning, the local fuel burning rate for a cylindrical wick of height 100

mm and radius 50.8 mm .:viated only slightly from the flat plate solution.

This study, though not a comprehensive treatment of mixed convective burning of

Li-SF6 wick diffusion flames, has accomplished its objectives. For one, a mathematical

model was developed for wick-type Li-SF6 diffusion flames undergoing mixed

convective burning. Secondly, numerical solutions were obtained to assess the effects

due to geometry (cylindrical versus planar wicks, varying wick heights and aspect ratios)

and ambient conditions (free-stream velocity of oxidant, gravity) on the wick combustion

of Li and SF 6 . Thirdly, results were presented that will add to the knowledge base of

earth-bound combustion experiments performed for variable gravity conditions. These

results include establishing a relationship between the burning rate and the free-stream

velocity, investigating the effects of reduced gravity on the wick combustion, and

performing a sample calculation to determine the number of wicks needed to meet a heat

output requirement.

Further analysis and experimentation are needed to evaluate the uncertainties of

the analysis, as well as confirm the results predicted. Suggested future work includes

extending the analysis to turbulent flow, incorporating radiative heat transfer into the

analysis, analyzing the end effects of a finite wick, and considering the effects of the

presence of non-condensable gases, such as argon.
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APPENDIX A

COMPUTER PROGRAM FOR FLOW CALCULATION

Main* P*g*m

C FILENAME: FLOW.MC.C.V.U1 (U- DENOTES FREE-STREAM VELOCITY)
C COMMENTS: THIS IS THE FLOW CALCULATION PROGRAM FOR MIXED CONVECTION
C * CYLINDER: CURVAT NOT EQUAL TO 0 DIMENSIONS: H--0.1 M AND R=12.5 MM
C * VARIABLE PROPERTIES: LI AND SF6 SYSTEM PRESSURE = 0.1 MPA
C * YFW = 0.38 (CONVERGED INTERFACE CONDITION)
C * OUTPUT: LOCAL FUEL BURNING RATE RMBR

IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(I-N)
COMMON /INPTI/ A1,A2,A1Z,ALFAOALFAI,IT,IFLAG,GRRJA,

1 HPLATERADIUS,RKVISI,RE,UINFRI
COMMON /EOS2/ ZMF(1O),RHO(1O),TEP(1O1),RHOM(200),TEMP(200),

1 DVC(101),PR(101),DVCM(200),PRM(200),JC
COMMON /ETA3/ ETAE,NP6,NP,DETA(200),ETA(200),A(200),NPC,NNPNXT,

I NX,X(600),CVW,VW(2),VWT
COMMON /REST4/ F(200,2),U(200,2),V(200,2),Z(200,2),P(200,2),

1 AM(200,2),B(200,2),BZ(200,2),BT(200)
COMMON /SOLV6/ DELF(200),DELU(200),DELV(200),DELZ(200),

1 DELP(200),ABSERR

ITMAX = 900
NX = I

C------------ ------- ----------- -----------------------------------------

C SUBROUTINE INPUT SUPPLIES FLOW GEOMETRY AND PROPERTY CONSTANTS
C A1,A2: MOMENTUM EQUATION PARAMETERS
C A1Z: MIXTURE FRACTION PARAMETERS
C ALFA0,ALFAI: BOUNDARY CONDITIONS PARAMETER
C IFLAG: CONTROL PARAMETER
C GR: GRASHOF NUMBER
C HPLATE: LONGITUDINAL LENGTH
C RADIUS: RADIUS OF CYLINDER
C RKVISI: KINEMATIC VISCOSITY AT INFINITY
C RJA: MODIFIED JACOB NUMBER
C RE: REYNOLDS NUMBER
C UINF: VELOCITY AT INFINITY
C RI: RICHARDSON NUMBER (GR/REA2)
C ----------.----.------.----- ..........-- -- -- --------------

CALL INPUT
C --...--------- ..---............------- ---------------------------

C SUBROUTINE GRID SET UP GRID SYSTEM
C NXT: TOTAL GRID POINT IN X-DIRECTION
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C X(NX): GRID POSITION IN X-DIRECTION
C ETAE: BOUNDARY LAYER THICKNESS
C ETA(J): GRID POSITION IN Y-DIRECTION
C DETA(J): INCREMENT OF GRID POSITION IN Y-DIREC-TION
C VGP: RATIO OF ADJACENT GRIDS IN Y-DIRECTION
C NP: TOTAL GRID POINT IN Y-DIRFCTION

CALL GRID
C ----------- ----------- --------------- --------------------------------------

C SUBROUTIN IVZPL PRODUCES INITIAL GUESS PROFILES AND BOUNDARY
C CONDITIONS FOR FLOW CALCULATION
C F(J,2): DIMENSIONLESS STREAM FUNCTION
C U(J,2): DIMENSIONLESS STREAMWISE VELOCITY
C V(J,2): DERIVATIVE OF U(J)
C Z(J.2): MIXTURE FRACTION
C P(J,2): DERIVATIVE OF Z(J)
C - ------- ------- --------------- ---------------------------------------------

CALL IVZPL
IFLAG = 1

10 IT=0
20 IT =IT+ I

IF( IT .LT. ITMAX ) THEN
C------------------------------------------------------------------------------------

C SUBROUTINE INUPD INITIALIZE AND UPDATE PARAMETERS AND CALCULATE
C CURVATURE TERM
C AM(J,2): MOMENTUM SOURCE TERM
C B(J,2): PROPERTY TERM IN MOMENTUM EQUATION
C BZ(J,2): PROPERTY TERM IN MIXTURE FRACTION EQUATION
C--------------------------------------------------------------------------------

CALL INUPD
CALL COEF
CALL SOLV5
IF( ABSERR .GT. I.D-06) THEN
GO TO 20
ELSEIF( DABS( V(NP,2)) .GT. I.D-03 ) THEN
CALL GROA LH

C WRITE(6,1000) NNP
1000 FORMAT(IHO, 'ETAE GROW ',13,' -POINTS ADDED-)
GO TO 10
ENDIF
ELSE

C WRITE(6,2000) NX ,X(NX),DELV( I),DELP( I)
2000 FORMAT(I1HO,4HNX =,13,5X,3HX =,EI 0.4,5X ,25HITERATIONS EXCEEDED

1 ITMAX,5X,7HDELVW =,EIO.4,5X,7HDELZW =,EI10.)
ENDIF

C ----------- --------------- ------- ------- -----------------------------
C CORRECT WALL BLOWING VELOCITY ACCORDING TO ENERGY AND SPECIES
C WALL BOUNDARY CONDITIONS
C ------ ---- ---- - -- ------ -- -- --- -- -- -- -- -- -- --- -- -- -- -- -- --- -- -- -- -- -- -- --- -- -- -- -- -- --

IF( NX .NE. 1) THEN
VWT =VW(2)

C VW(2) = -( P(1,2) + ZPWT ),2.D+00*( GRIX(NX) )**2.5D-0I/RJA
VW(2) = -P(I.2) * (RE/X(NX))**5.0D-0I/RJA

C VW(2) = -( P(1,2) + ZPWT )/2.D+00*DSQRT( REIX(NX) )/RJA
ZPWT = P(1,2)
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IF( DABS( VW(2) - VWT) .GT. I .D-08 ) THEN
F(1,2) = F(1,1)*( X(NX-1)/X(NX) )**5.OD-01

I + CVW*( VW(I) + VW(2) )/2.D+e00*( X(NX) - X(NX - 1))
2 /X(NX)**5.OD-o1

GO TO 20
ELSE
VW(1) = VW(2)
ENDIF
ENDIF
CALL OUTPUT
IF( NX .LE. NXT ) THEN
GO TO 10
ENDIIF
WRITE(6,5 14)

514 FORMAT(I HO,'MAIN: PROGRAM HAS EXECUTED')
STOP
END
SUBROUTINE INPUT
IMPLICIT REAL*8(A-H,O-Z),1NTEGER*4(I-N)
COMMON /INPyrl/ Al ,A2,A1ZALFAO,ALFAI ,IT,IFLAG,GRRJA,

1 HPLATERADIUSRKVISI,RE,ULNFRI
COMMON 1E052/ ZMF( 101).RHO(I101),TEP(I01),RHOM(200),TEMP(200),

1 DVC( 101),PR(IO1),DVCM(200),PRM(200),JC

AlI = I.D+00
A2 = O.D+00
AIZ = l.D+00

C ALFAO= 1, ALFAI= 0 SPECIFY FUNCTION VALUE
C ALFAO =0.ALFAIl1 SPECIFY FUNCTION DERIVATIVE
C------------------------------ --------------- ---------

ALFAO = 1
ALFA = 0

C---------------------------------------------------------------------------------

C READ IN CONSERVED SCALAR, TEMPERATURE, DENSITY, VISCOSITY, AND
C PRANDTL NUMBER FROM CEC72 CALCULATION (FROM BLOCK DATA AT END)
C ** SUPPRESS PROPERTIES FOR BLASIUS SOLUTION **
C---------------------------------------------------------------------------------------

READ(5,1000) ( ZMF(J),TEP(J),RHO(J),DVC(J),PR(J),J= 1,101)
1000 FORMAT(F7.4,5XF7. 1,5XE I1.4,5X,EI I 1.4,5X,F6.4)
C DO 20 J1,1
C RHO(J) = 5.9696D-01
C DVC(3) = 1.57 IOD-05
C PR(J) = 0.7368D+00
C20 CONTINUE
C----------------------------------------------------------- -- -- -- --------- ------

C FLOW AND GEOMETRY CONSTANTS
C YFW: FUEL MASS FRACTION AT WALL
C CPW: SPECIFIC HEAT AT WALL
C RKMW: THERMAL CONDUCTIVITY OF MIXTURE AT WALL
C DYFDZ: DERIVATIVE OF FUEL MASS FRACTION W.R.T. MIXTURE FRACTION
C--------------------------------------------------------------------------------------

HPLATE = 1.D-01
RKVISI = 1.55725D-O5IRHO(1)
GR = 9.80665D+O0* DABS( RHO(l)/RHO(I 0I) - I.D 00 )*HPLATE**3.D+0
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1 /RKVISI/RKVISI
YFW = 3.8474ID-O1
CPW = 2.7935D+03
RKMW =7.3 15D-02
DYFDZ = 7.6273D-01

C RJA = DSQRT( 2.D+00 )*HPLATE*( 1.D+00 - YFW )*RHO(l)*CPWIRKMW
RJA = DSQRT( 2.D+00 )*HPLATE*( 1.D+00 - YW)*RHO(1)*CPW/RYJMllW/DYPF)Z
RADIUS = 1.25D-02
UINF= 1.D+00
RE-=UINF*HPLATE/RKVISI
RI--GR/RE/RE
RETURN
END
SUBROUTINE GRID
IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(I-N)
COMMON /ETA3/ ETAENP6NPDETA(200)XETA(200),A(200),NPCNNPNXT,

1 NX,X(600),CVW,VW(2),VWT
C-

NXT = 600
DXP = 2.D-03
DXPO = 1.OD-05
L= 101
DETA(1) = 1.D-02
VGP = 1.05D+00
ETAE = 1.OD+UAj

C ---------------------------- --- -----

C GRID GENERATION IN X-D[RECTION
C ------ --- --- --- ------------------------

X(I) = .D+00
DO 95 1=2,L
X(I) = X(I-1) + DXPO

95 CONTINUE
DO 100I1= L+1,NXT
X(I) = X(I-1) + DXP

100 CONTINUE
C--------------------------------------------------

C GRID GENERATION IN Y-DIRECTION
C---------------------------------------------------

UF( (VGP -1I.D+00) .GT. I.D-03 ) THEN
NP = DLOG( ETAEIDETA(1)*(VGP - I.D+00) + I.D+00)

1 /DLOG(VGP) + 1.OOOID+00
NP6 = DLOG( 6.D+00/DETA(1)*(VGP - I.D+00) + I.D+00)

1 /DLOG(VGP) + 1.00OID+00
ELSE
NP = ETAE/DETA(1) + 1.000ID+00
ENDIF
IF( NP .LE. 310) THEN
ETA(1) = O.D+00
DO 200 J =2,NP
DETA(J) = VGP*DETA(J-I)
A(J) = DETA(J-1)/2.D+00
ETA(J) = ETAJ- 1) + DETA(J)

200 CONTINUE
ELSE
WRITE(6,1000)
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1000 FORMAT(IH0,'NP EXCEEDED MAXIMUM ARRAY DIMENSION ALLOWED
1 PROGRAM TERMINATED')

STOP
ENDIF
RETURN
END
SUBROUTINE IVZPL
IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(I-N)
COMMON /INPT1/ A1,A2,A1Z,ALFAOALFA1,IT,IFLAG,GRRJA,

I HPLATERADIUS,RKVISI,RE,UINFRI
1 NX,X(600),CVW,VW(2),VWT

COMMON /REST4/ F(200,2),U(200,2),V(200,2),Z(200,2),P(200,2),
I AM(200,2),B(200,2),BZ(200,2),BT(200)

COMMON /SOLV6/ DELF(200),DELU(200),DELV(200),DELZ(200),
1 DELP(200),ABSERR

C----..

ETA6 = 6.D+00 + 5.D-01
C ---.---.-------- - - - ........................... ------------

C GENERATE INITIAL PROFILE BY SOLVING THE INCOMPRESSIBLE FLOW
C -------------------------------------------- -- -------------

DO 100 J = 1,NP6
ETAR = ETA(J)/ETA6
ETAR2 = ETAR*ETAR
F(J,2) = ETA6/4.D+00*ETAR2*( 3.D+00 - ETAR2/2.D+00)
U(J,2) = ETAR*( 1.5D+00 - ETAR2/2.D+00)
V(J,2) = 1.5D+00*( 1.D+00 - ETAR2 )/ETA6
Z(J,2) = 1.D+00 - ETAR
P(J,2) = -1.D+00/ETA6

100 CONTINUE
C --- - -------- ----- ------- ---- ----

C INITIAL VALUE OF BOUNDARY CONDITIONS
C ---.--- -- ......................------- -- -----..........

U(NP6,2) = 1.D+00
Z(NP6,2) = 0.D+00
VW(I) = O.D+00
VW(2) = 0.D+00

C ----------.-.--------.-----...------.-.......------------- -----------

C GENERATE BETTER PROFILES
C IFLAG = 0, ETAE =ETA6 = 6.D+00
C IFLAG =1, ETAE = ETAE
C --.-.- ........---------- -------------------.-.---------............

IFLAG = 0
IT=0

10 IT=IT+ I
C --- - .....................--- -- -- -- - -- -- -------...

C INITIALIZE AND UPDATE PROFILES
C --- - ......................--- -- -- -- - -- ----.........

CALL INUPD
IF( IT .GT. 100) THEN
WRITE(6,1000)

1000 FORMAT(IH0,'INCOMPRESSIBLE FLOW SOLUTION DID NOT CONVERGE')
STOP
ELSE
CALL COEF
CALL SOLV5
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IF( ABSERR .GT. I.D-06 ) GO TO 10
ENDIF

C------------------------------------- ----------

C SET UP DUMMY NODES
C----------------------- - -------------

DO 200 J = NP6+ I ,NP
F(J,2) =F(NP6,2)

U(J,2) =U(NP6,2)
V(J.2) =V(NP6,2)

Z(J,2) =Z(NP6.2)

P(J,2) =P(NP6,2)

200 CONTINUE
RETURN
END
SUBROUTINE COEF
IMPLICIT REAL*8(A-H,O-Z)XNTEGER*4(I-N)
COMMON /INPT1/ Al .A2,AIZALFAOALFA 1,IT,IFLAG,GRRJA,

I PLATERADIUSRKVISIRE,UINFRI
COMMON /ETA3/ ETAENP6NPDETA(200),ETA(200)A(200),P,NNPNXT,

I NX,X(600),CVW,VW(2),VWT
COMMON /REST4/ F(200,2),U(200,2),V(200,2),Z(200,2),P(200,2),

I AM(200,2),B(200,2),BZ(200,2),BT(200)
COMMON /COEF5/ S l(200),S2(200),S3(200),S4(200),S5(200),S6(200),

I 7,S8,B 1(200),B2(200),B3(200),B4(200),
2 B5(200),B6(200),B7(200),B8(200),R(5,200)
C=-----------------------------
IF( IT.EQ. 1) THEN
CEL = 0.D+00
IF( NX .GT. 1) THEN
CEL = I.D+00*( X(NX) + X(NX - 1) )/( X(NX) - X(NX - 1))
ENDIF
PIP Al +CEL
P2P A2 + CEL
P1PZ = A1Z+CEL
ENDIF

C -----------------------------------------------
C PRESENT STATION
C ----- -----------------------------------------

DO 100 J =2,NPC
FB =(F(J,2) + F(J-1,2) )/2.D-.00

=B (U(J,2) + U(J-I,2) )/2.D+00
VB =( V(J,2) + V(J-1,2) )/2.D-.00
ZB =(Z(J,2) + Z(J- 1,2) )/2.D+00
PB =(P(J,2) + P(J-1.2) )t2.D+00
AMB = ( AM(J,2) + AM(J- 1,2) )/2.D+00
FVB = ( F(J,2)*V(J,2) + F(J-1,2)*V(J-1,2) )t2.D+00
USB = (U(J,2)*U(J,2) + U(J- 1,2)*U(J- 1,2) )/2.D+00
FPB = (F(J,2)*P(J,2) + F(J- 1,2)*P(J- 1.2) )/2.D+00
UZB = (U(J,2)*Z(J,2) + U(J- 1,2)*Z(J- 1,2) )/2.D+00
DBV = ( B(J,2)*V(J,2) - B(J-1,2)*V(J-1,2) )IDETA(J - 1)
DBZP = ( BZ(J,2)*P(J,2) - BZ(J- 1,2)*P(J- 1,2) )IDETA(J - 1)
IF( NX .EQ. 1) THEN

C - ------- -------------------------------------

C PREVIOUS STATION
C---------------------------------- ---------------
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CFB =O.D+0
CUB =O.D+0O

CVB = .D+0O
CZB O .D+00
CPB =0.13+00

CAMB = 0.D+OO
CFVB = O.D+OO
CUSB = 0.D+0O
CFPB =O.D+OO

CUZB 0 .13+00
CDBV = .D+OO
CDBZP = O.D+OO
CRB = 0.D+0
CR.ZB = .D+0O
ELSE
CFB, =F(J, 1) + F(J-1, 1) )/2.D+0o
CUB =(U(J, 1) + U(J- 1,1) )t2.D+oo
CVB =( V(J,1) + V(J-1,1) )/2.D+00
CZB ( (Z(J, 1) + Z(J-1,1) )/2.D+00
CPB ( (P(J, 1) + P(J- 1, 1) )/2.D+00
CAMB =( AM(J,l1) + AM(J- 1, 1) )/2.D+00
CFVB =(F(J,1)*V(J,l) + F(J-1,1)*V(J-1,1) )t2.D+0
CUSB =(U(J,I)*U(J,1) + U(J-1,1)*U(J-1,1) )/2.D+0fl
CFPB =(F(J,1)*P(Jl) + F(J-ll)*P(J.1,1) )12.D+0
CUZB =( U(J, 1)*Z(J, 1) + U(J 1, 1)*Z(J- 1, 1) )/2.D+00
CDBV =(B(J,1)*V(J,l).- B(J-1,1)*V(J-1,l) )/DETA(J-1)
CDBZP = ( BZ(J,l)*P(J,l) - BZ(J-l,l)*P(J-1,l) )/DETA(J-1)
CLB = CDBV + AI*CFVB - A2*CUSB + CAMB
CRB = -CLB + CEL*( CFVB - CUSB)
CLZB = CDBZP + AIZ*CFPB
CRZB = -CLZB + CEL*( CFPB - CUZB)
ENDIF

C COEFFICIENTS OF THE DIFFERENCED MOMENTUM EQUATION SINCE 57(J)
C AND S8(J) ARE EQUAL TO 0.5. THEY ARE SPECIFIED WITHOUT VECTOR FORM
C---------------------------------------------------------- -- -- -- -- -- -- -- -- -- -

S I(J) = B(J,2)IDETA(J-1) + (P PP'F(J,2) - CEL*CFB )t2.D+OO
52(J) = -B(J-1,2)/DETA(J-1) + (PIP*F(J.1,2) - CEL*CFB )/2.D+00
S3(J) = ( PIP*V(J,2) + CEL*CVB )/2.D+00
S4(J) = ( P1P*V(J- 1,2) + CEL*CVB )/2.D+00
S5(J) = -P2P*U(J,2)
S6(J) = -P2P*U(J..1,2)

C---------------------------------------------------------
C COEFFICIENTS OF DIFFERENCED ENERGY EQUATION
C ----------------------------------- -------------- - -----

B 1 (J) = BZ(J,2)/DETA(J- 1) + ( PI1PZ*F(J,2) - CEL*CFB, )/2.D+00
B2(J) = -BZ(J- 1,2)/DETA(J-l1) + (PI PZ*F(1i1,2) - CEL*CFB )/2.D+00
B3(J) = (P1PZ*P(J,2) + CEL*CPB )t2.D+0O
B4(J) = ( PI1PZ*P(J- 1,2) + CEL*CPB )/2.D+00
B5(J) = CEL*( CZB - Z(J,2\ )t2.D+00
B6(J) = CEL*( CZB - Z(J-1,2) )/2.D+0
B7(J) = -CEL* ( U(J,2) + CUB )/2.D+00
B8(J) = -CEL*( U(J-I,2) + CUB )/2.D+00

C-------------------------------------------------
C DEFINITION OF RJ
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R(1,J) = F(i-1,2) - F(J,2) + DETA(J.1)*UB
R(2j) = CRB - ( DBV + P1P*FVB - P2P*USB + CEL*( IB*CVB- CFB*VB ) +, AMB)
R(3,j) = CRZB - ( DBZP + PIPZ*FPB ..CEL*(UZB+CUB*ZB-UB*CZB+CFB*PB-FB*CPB))
R(4J-l) = U(J-1,2) - U(J,2) + DETA(J.1)*VB
R(5,J-1) = Z(J-1,2) - Z(J,2) + DETA(J.1)*PB

100 CONTINUE
S7 =5.D-01
S8 =5.D-01

C --------.--------.------------
C SET UP DERIVED BOUNDARY CONDITIONS
C. -------------------- ------- ------ -----

R(l, 1) = O.D+00
R(2,1) = O.D+00
R(3, 1) = O.D+0
R(4,NP) = O.D+00
R(5,NPC) = O.D+00
RETURN
END
SUBROUTINE SOLV5
IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(I.N)
COMMON /INPTl/ Al ,A2,A1ZALFAOALFA IJT,IFLAG,GRRJA,

I HPLATERADIUSRKVISI,RE,UINFRI
COMMON /ETA3/ ETAENP6NP,DETA(200),ETA(200),A(200)NPC,NNPNXT,

1 NX,X(600),CVW,VW(2),VWT
COMMON /REST4/ F(200,2),U(200,2),V(200,2),Z(200,2),P(200,2),

1 AM(200,2),B(200,2),BZ(200,2),BT(200)
COMMON /COEF5/ S l(200),S2(200),S3(200),S4(200),S5(200),S6(200),

1 S7,S8,B I(200),B2(200),B3(200),B4(200),
2 B5(200),B6200),B7(200),B8(200),R(5,200)

COMMON /SOLV6/ DELF(200),DELU(200),DELV(200),DELZ(200),DELP(200),ABSERR
DIMENSION A12(200).A13(200),A 14(200),A15(200),

1 A21 (200),A22(2G0),A23(200),A24(200),A25(200),
2 A3 1(200),A32(200).A33(200),A34(200),A35(200),
3 Gi I (200),G I 2(200),G I 3(200),G 14(200),G 15(200),
4 G2 1(200),G22(200),G23(200),G24(200),G25(200),
5 G31I(200),G32(200),G33(200),G34(200),G35(200),
6 WI (200),W2(200),W3(200),W4(200),W5(200)

C=
C ELEMENTS OF TRIANGLE MATRIX-ALFA FOR J = 0, SET UP SO THAT
C DELF(I), DELU(1), ALFAO* DF±Z(1) + ALFA I*DELO(1) ARE ZERO
C SINCE A II(J) IS UN ITY, IT IS OMITTED

A 12(1) = O.D+00
A13(1) = .D+00
A14(1) = .D+00
A15(1) = O.D+00
A21(1) = O.D+00
A22(l) = I D+00
A23(1) = O.D+00
A24(l) = 0.D+00
A25(1) = O.D+00
A3 1(1) = 0. D+00
A32(1) = O.D+00
A33(l) = O.D+00
A34(l) = ALFAO
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A35(1) = ALFA1I
C -- ------ -- --- ---- -- --- -------- ---------
C ELEMENTS OF W-VECTOR FOR J = 0
C------------------------------------- -----

W I(I) =R(I,1I)

W2(1) R(2,1I)
W3(1) =R(3,1)

W4(1) =R(4.1)

W5(1) =R(5,I)

C --- ------- --- ----- ------ ----- -----

C FORWARD SWEEP
C ------- ---------------------------------

DO 100 J =2,NPC
AAI = A(J)*A24(J-1) - A25(J-1)
AA2 = A(J)*A34(J-1) - A35(J-1)
AA3 = A(J)*A12(J-1) - A13(J-1)
AA4 = A(J)*A22(J-1) - A23(J-1)
AA5 = A(J)*A32(J-1) - A33(J-1)
AA6 = A(J)* A14(J- 1) - A I5(J- 1)
AA7 = A(J)*S6(J) - S2(J)
AA8 = A(J)*S8
AA9 = A(J)*B6(J)
AA 10 = A(J)*B8(J) - B2(J)
DET = AA4*AA2 - AAI*AA5 - A21(J-1)*( AAP3*A2 -

1 AA~5*AA46) + A31(J-1)*( jAj3*AAI - AA4*ApA6)
C ---- --- --------------------------------

C ELEMENTS OF TRIANGLE MATRIX-GAMMA
C---------------------------- ------ ------- -----

GI 1(J) = (AA5*AAI - AA4*AA2 + A(J)*A(J)*( A2l(J-1)*AA2- A3l(J-I)*AA ) )/DET
G12(J) = ( &.4 3*AA2 - A5*AAi6 - A(J)*A(J)*( AA2- A31(J-1)*AA6) )/DET
G13(J) = (A4*pAp6 - Ap3*pA1I + A(J)*A(J)*( AA1- A21(J-1)*AA6) )IDET
G14(J) = GII(J)*A12(J-1) + G12(J)*A22(J-1) + G13(J)*A32(J-1)+ A(J)
G15(J) = GI1(J)*A14(J-1) + G12(J)*'A24(J-1) + G13(J)*A34(J-1)
G21(J) = ( 54(J)*( AA2*AA4 - AAI*AA5 ) + A31(J-1)*( AA1*AA7

I - AA4*AA8 ) + A2l(J-I)*( AA5*AA8 - AA7*AA2 ))/DET
G22(J) = ( AA2*AA7 - fik5*AA8 + A31(J-1)*(AAp3*AAp8

1 - AA6*AA7) + S4(J)*( AA5*AA6 - AA2*AA3 ))/DET
G23(J) = ( AA4*AA8 - AA1*AA7 + S4(J)*(AA3AA

1 - AA4*AAi6) + A21(J-1)*( AA7*AA6 - AA3*AA8 ))/DET
G24(J) = G21 (J)*A 12(J- 1) + G22(J)*A22(J- 1) + G23(J)* A32(J- I)- S6(J)
G25(J) = G21(J)*AI4(J-1) + G22(J)*A24(J-1) 4.G23(J)*A34(J-1)- S8
G31(J) = ( B4(J)*( AAP4*AA2 - AA5*AA1) -AA9*( A21(J-1)*AA2

1 - A31(J-1)*AAI ) + AA1O*(A21(J-1)*AA5- A31(J-1)*AA4) )/DET
G32(J) = (B4(J)*( A5*AA6 - AA3*AA2 ) + AA9*( AA2

1I A31(J-1)*AA6) - AAIO*( AA5- A31(J-1)*AA3 ))/DET
G33(J) = ( B4(J)*( AA3*AAI - AA4*AA6) - AAp9*( AAI

1 - A21(J-1)*AA6) + AAIO*( AA4- A21(J-1)*AA3 ) )DET
G34(J) = 031(J)*Al2(J-1) + G32(J)*A22(J-1) + G33(J)*A32(J-1)- B6(J)
G35(J) = G31(1)*A14(J-1) + G32(J)*A24(J-1) + G33(J)*A34(J-1)- B8(i)

C------------------ ------------- ------------

C ELEMENTS OF TRIANGLE MATRIX-ALFA
C -----------------------------------------------

A 12(J) = -A(J) - G14(J)
A 13(J) = A(J)*G14(J)
A 14(J) = -G 15QJ)
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A15(J) = A(J)*G15(J)
A21(J) = S3(J)
A22(J) = S5(J) - G24(J)
A23(J) = A(J)*G24(J) + S I1(J)
A24(1) = S7 - G25(J)
A25(J) = A(J)*G25(J)
A3 I(J) = B3(J)
A32(J) = B5(J) - G34(J)
A33(J) = A(J)*G34(J)
A.34(J) = B7(J) - G35(J)
A35(J) = A(J)*G35(J) + B I1(J)

C-------------------- - ----- - ----- -----------

C ELEMENTS OF W-VECTOR
C---------------------------------------

WI(J) = R(I J) - GI I(J)*W1(J- 1) - G 12(J)*W2(J- 1)
1 - G13(J)*W3(J-1) - G14(J)*W4(J-1) - G15(J)*W5(J-1)

W2(J) = R(2j) - G21(J)*W1(J-1) - G22(J)*W2(J-1)
I - G23(J)*W3(J-1) - G24(J)*W4(J-1) - G25(J)*W5(J-1)

W3(J) = R(3,j) - G31(J)*W1(J-1) - G32(J)*W2(J-1)
1 - G33(J)*W3(J-1) - G34(J)*W4(J-1) - G35(J)*W5(J-1)

W4(J) = R(4J)
W5(J) = R(5J)

100 CONTINUE
C----------- ------ --- ------------------

C BACKWARD SWEEP
C------------------- ----- ------ -------------

DI = A31(NPC)*( A23(NPC)*A15(NPC) - A13(NPC)*A25(NPC) ) +
1 A33(NPC)*( A25(NPC) - A21(NPC)*A15(NPC)) -

2 A35(NPC)*( A23(NPC) - A21(NPC)*A13(NPC))
DF = A35(NPC)*( A13(NPC)*W2(NPC) - A23(NPC)*WI(NPC) ) + A33(NPC)*

1 (A25(NPC)*WI(NPC) - A15(NPC)* W2(NPC) ) - W3(NPC)*
2 (A13(NPC)*A25(NPC) - A&23(NPC)*A15(NPC))

DV =A31(NPC)*( A15(NPC)*W2(NPC) - A25(NPC)*WI(NPC)) - A35(NPC)*
1 (W2(NPC) - A21(NPC)*WI(NPC) ) + W3(NPC)*
2 (A25(NPC) - A15(NPC)*A21(NPC))

DP =A31(NPC)*( A23(NPC)*W1(NPC) - A13(NPC)*W2(NPC) ) + A32(NPC)*
1 (W2(NPC) - A21(NPC)*W1(NPC) ) - W3(NPC)*(A23(NPC) - A13(NPC)*A21(NPC))

C---------------------------------------
CELEMENTS OF DELTA-VECTOR FOR J = NP

C ------------- ------------------------------------

DELF(NPC) =DF/DI

DELU(NPC) = .D+00
DELV(NPC) =DV/D I
DELZ(NPC) = .D+00
DELP(NPC) DP/D I
DO0200 J = NPC- 1, 1,- 1
BBI = DELU(J+1) -A(J+I)*DELV(J+1) - W4(J)
BB2 = DELZ(J+1) -A(J+1)*DELP(J+1) - W5(J)
CCI = WI(J) - A12(J)*BB1 - A14(J)*BB2
CC2 = W2(J) - A22(J)*BB1I - A24(J)*BB2
CC3 = W3(J) - A32(J)*BB1I - A34(J)*BB2
DD1 = A13(J) - A(J+I)OA12(J)
DD2 = A23(J) - A(J+I1)*A22(J)
DD3 = A33(J) - A(J+I)*A32(J)
EEI = A150i) - A(J-4')*A14(J)
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EE2 = A25(J) - A(J+1)*A24(J)
EE3 = A35(J) - A(J+1)*A34(J)
DETT = DD2*EE3 + A21(J)*DD3*EE] + A31(J)*DDI *EE2

1 A31(J)*DD2*E1 - A21(J)*DDI*EE3 - DD3*EE2

C FLEMENTS OF DELTA-VECTOR
C --------------.------ ------- --- --- ------

DELF(J) = ( CCI*DD2*EE3 + CC2*DD3*EE1 + CC3*!D1*EE2 -

I CC3*DD2*EEI - CC2*DDI*EE3 - CC1*DD3*EE2 )/DETI'
DELV(J) = ( Cy2*E3 + A21(J)*CC3*EEI + A31(J)*CCI*-E2

1 - A31(J)*CC2*EEI - A21(J)*CC1*EE3 - CC3*EE2 )/DE-1T
DELU(J) =BBI - A(J+1)*DELV(J)
DELP(J) =(CC3*DD2 + A21(J)*CCI*DD3 + A31(J)*CC2*DDI

1 - A31(J)*CCI*DD2 - A21(J)*CC3*DD1 - CC2*DD3 )/DET
DELZ(J) = BB2 - A(J+l)*DELP(J)

200 CONTINUE
C.- --- ------- -------- ------- - --------- ---------

C NEW VALUES OF F,U,VZP WITH UNDER-RELAXATION
C---------------------------------------- ----

ABSERR = O.D+0
DO 300 J = NPC
F(J,2) =F(J,2) + DELF(J)/1.2D+00
U(J,2) U(1,2) + DELU(J)/I .2D+00
V(J,2) =V(J,2) + DELV(J)/1.2D+00
Z(J,2) =Z(J,2) + DELZ(J)/1.2D+0
P(J,2) =P(J,2) + DELP(J)/1.2D+00
IF( Z(J,2) .LT. 0.D+00) THEN
Z(J,2) = O.D+00
ENDIF
ABSERR = ABSERR + DABS( DELF(J) )+ DABS( DELU(J) )+

1 DABS( DELV(J) )+ DABS( DELZ(J) )+ DABS( DELP(J))
300 CONTINUE
C------ ------- --- --- --- --- --- ----------- -------------- ---

C RESET BOUNDARY CONDITIONS TO AVOID TRUNCATION ERROR
C -------- -------------------------------------------------

U(1,2) = .D+0
Z(1,2) = ( I.D+00 - ALFA I*P(1,2) )/ALFAO
RETURN
END
SUBROUTINE INUPD
IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(1-N)
COMMON /INnI1 Al ,A2,A IZ,ALFAOALFA 1,IT,IFLAG.GRRJA.

1 HPLATERADIUS,RKVISI,RE,UINF.RI
COMMON /E052/ ZMF(101),RHO(IO1),TEP(IOI),RHOM(200),TEMP(200),

1 DVC(I101),PR(I 01),DVCM(200),PRM(200),JC
COMMON /ETA3/ ETAENP6NP,DETA(200),ETA(200),A(200),NPC,NNPNXT,

I NX,X(600),CVW,VW(2),VWT
COMMON /REST4/ F(200,2),U(200,2),V(200,2),Z(200,2),P(200,2),

1 AM(200,2),B(200,2),BZ(200,2),BT(200)
C --

IF( IFLAG .EQ. 0) THEN
NPC = NP6
ELSE
NPC = NP
EN DIF
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C SET UP CURVATURE EFFECTS
C - ------------------------------------------------
C CURVAT = 2.D+00**1.5D+00*HPLATEIRADIUS*( X(NX)/GR )**2.5D-01

CURVAT = 2.D+O0** 1 .5D+O0*HPLATE/RADIUS* (X(NX)IRE )** 5.OD-O I
C CURVAT =O.D+00

RHOM(1) =RHO(101)
TEMP(1) = TEP(1O1)
Alv(1,2) = I.D+00
BT(I) = I.D+00
B(1 ,2) = BT(1)*RHOM(1)*DVC( 1O1)/RHO( 1)/DVC( 1)
BZ(1,2) = B(1,2)/PR(I01)
DO 100 JC =2,NPC
CALL SOURCE
AM(JC.2) = ( RHO(1)/RHOM(JC) - 1.D+00 )/( RHO(1)/

1 RHO(101). -1.D+00) * 2.D+00*X(NX)*RI
C AM(JC,2) = O.D+O0 INVOKE FOR FORCED CON VECTION"*

BT(JC) = BT(JC-1) + CURVAT.*RHO(1)/2.D+00*( 1.D+00/RHOM(JC)
1 + 1.D-400/RHOM(JC-1) )*( ETA(JC) - ETA(JC-1))

B(JC,2) = BT(JC)*RfIOM(JC)*DVCM(JC)/Rf4iO( I)/DVC( I)
BZ(JC,2) = B(JC,2)/PRM(JC)

100 CONTINUE
RETURN
END
SUB3ROUTINE SOURCE
IMIPLICIT REAL*8(A-H,O-Z),INTEGER*4(I-N)
COMMON /E052/ ZMF(1OI),RHO(101),TEP(lOI),RHOM(200),TEM(200),

1 D)VC( 101),PR(101),DVCM(200),PRM(200),JC
COMMON /REST4/ F(200,2),U(200,2),V(200,2),Z(200,2),P(200,2),

1 AM(200,2),B(200,2),BZ(200,2),BT(200)
C-

DO 10 1= 1,100
IF( (Z(JC,2) .GE. ZMF(I)) .AND. (Z(JC,2) .LT. ZMF(I+1) )) THEN
RHOM(JC = RHO(I) + (RHO(I+1) - RHO(I) )*( Z(JC,2) -

1 ZIVIF(I) )/( ZMF(I+ 1) - ZMF(I))
TEMP(JC) = TEP(I) + (TEP(I+l) - TEP(I) )*( Z(JC,2) -

1 ZMF(I) )/( ZMF(I+1) - ZMF(I))
DVCM(JC) = DVC(I) + ( DVC(I+I) - DVC(I) )*( Z(JC,2) -

I Z~iF(I) )/( ZM]F(I+i) -ZMF(I))

PRM(JC) = PR(I) + (PR(I+1) -PR(I) )*( Z(JC,2) -
1 ZMF(I) )/(ZMF(I+I) -ZMF(I))

ENDIF
10 CONTINUE

RETURN
END
SUBROUTINE GROWTH
IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(-N)
COMMON /ETA3/ ETAENP6NP,DETA(200),ETA(200),A(200),NPC.NNPNXT,

1 NX.X(600),CVW,VW(2),VWT
COMMON /RE-ST4( F(200,2),U(200,2),V(200,2).Z(200,2),P(2002),

1 AM(200,2),B(200,2),BZ(200,2),BT(200)
C-

N"P 3
NPO =NP
NP1 =NP + I
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NP =NP +NNP
IF( NP .GT. 310) THEN
NP = 400
ENDIF
DO 100L = 1,2
DO 101 J =NP1,NP
DETA(J) = DETA(J-1)
A(J) = A(J-1)
ETA(J) =ETA(J- 1) + DETA(J)
F(J,L) = F(NPOL) + U(NPOL)*( ETA(J) - ETA(J -1))
U(J,L) = U(NP0,L)
V(J,L) = V(NPOL)
Z(JL) = Z(NP0,L)
P(J,L) = P(NPO,L)
AM(J,L) = AM(NPOL)
B(J,L) = B(NPO.L)
BZ(J,L) = BZ(NPO,L)

101 CONTINUE
100 CONTINUE

RETURN
END
SUBROUTINE OUTPUT
IMPLICIT RE.*(-,-~-TGR4IN
COMMON /INPTI/ A1,A2,AIZALFAOALFA1,IT,IFLAG,GRRJA,

1 HPLATERADIUS,RKVISIREUINFRI
COMMON /EOS2/ ZMF( I01),RHO(I101),TEP(1O 1),RHOM(200),TEMP(200),

1 DVC(101),PR(I0 1),DVCM(200),PRM(200),JC
COMMON /ETA3/ ETAENP6,NP,DETA(200),ETA(200),A(200),NTPC,NNPNXT,

1 NX,X(600),CVW,VW(2),VWT
COMMON /REST4/ F(200,2),U(200,2),V(200,2),Z(200,P(200,2),

1 AM(200,2),B(200,2),BZ(200,2),BT(200)
DIMENSION Y(200)

C
IDNP I
NDX1 =1

C - ------- - --------------- ---------------------------------------------

C OUTPUT CONTROL (ADD OR DELETE COMMENTS FOR DESIRED OUTPUT)
C----------------------------------------------------------------------------

IF( (NX .LT. NXT) .AND. (NX .NE. 1)) THEN
NDX =NDX1I

NX1 NX + 1
IPRINT = NX I/NDX - NX/NDX
IF(IPRINT.EQ. 0)GO TO 10
ENDIF

C WRITE(6,1000) NXX(NX),VW(2)
1000 FORM[AT(1H0,4HNX =,13,5X,3HX =,F1O.7,5X,4HVW =,E1O.4)
RMBR = RHOM(1)*VW(2)

C WRITE(6,2000) RERJA.RMBR
2000 FORMAT(1H0,4HRE =,E1O.4,5X,4HJA =,E10.4,5X,5HMBR =,E10.4)

WRITE(6,2050) X(NX)RMBR
2050 FORM[AT(1 H0,FI 0.7,T20,FI 5.10)
C WRITE(6,3000)
3000 FORMAT(1 HO,2X,1 HJ,3X,3HETA,4X,I1HF,9X,2HFl ,8X,2HF2,8X, IHZ,9X,2HZ 1)
C WRITE(6,4000) (J,ETA(J)XF(J,2),U(J,2),V(J,2)Z(J,2),P(J,2)J = 1,NP,IDNP)
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C WRITE(6,4050) X(NY),RMBR,P(1,2)
4050 FORMAT(1 HO.FI0.7,T20,F1 5. 10,T40,F1 5.10)

C WRITE(6,4000) NPETA(NP),F(NP,2),U(NP,2),V(NP,2),Z(NP,2),P(NP,2)
C WRITE(6,4 100) NPETA(NP),F(NP,2),U(NP,2),V(NP,2)
4100 FORMAT(13,F7.2,3F10.5)
4000 FORMAT(1H0,I3,F7.2,5F10.5)
C -------------------------------------

C UPDATE PROFILES
C--------------------------- ------- -- --

PX = HPLATE*X(NX)
C WRITE(6,5000) PX
5000 FORMAT(1HO,?X ='E15.8)

10ODO 106 J= 1.NP
F(J, 1) =F(J,2)

U(J, 1) =U(3,2)
V(J.1) =V(J,2)

Z(J,1) =Z(J.2)

P(J, 1) =P(J,2)

B(J,l) =B(J,2)

BZ(J, I) = BZ(J,2)
AM(J,1I) = AM(J2)

C --- --- ------- ------------------------------------------

C TRANSFORM DIMENSIONLESS VARIABLE TO PHYSICAL LENGTH
C---------------------------- ------ -- ---------------------

Y(J) = RADIUS*( DSQRT( BT(J) ) - 1.D-400 )
UP = DSQRT( 4.D+00*9.80665D+00*( RHOM(NP)/RHOM(l) - 1.D+00)

1 *X(N)*HJPLAE)*U(J,2)
C IF( (NX .NE. 1) .AND. (IPRINT.NE. 0) .OR. (NX .EQ. NXT) ) THEN
C IF(J EQ.I) THEN
C ETAFP = O.D+00
C ELSE
C ETAFP = ETAFP + (GR/X(NX) )**2.5D-01/HPLATE/RHOM(NP)
C 1 I'2.D+00*( RHOM(J) +RHOM(J-1) )*( Y(J) - Y(J-1) )IDSQRT( 2.D+00)
C ENDIF
C WRITE(6,6000) ETAFPZ(J,2)
6000 FORMAT(IHOF15.6,5XF15.6)
C ENDIF
C WRITE(6,7000) Y(J),F(J,2),UP,T-EMP(J)
7000 FORMAT(IHO,4F15.6)
C WRITE(6,8000) Y(J),Z(J,2)
8000 FORMAT(IHO,2F15.6)
100 CONTINUE

NX = NX + 1
C ------------------------------------------------------------------ ------

C INITIALIZE WALL STREAM FUNCTION DUE TO WALL BLOWING EFFECTS
C - --------------------------------------------------------------

C CVW = -HPLATE/RKVISI/DSQRT( 8.D+00 )*RHO(101)1RHO(1)/GR**2.5D-01
CVW = -DSQRT(2.D+00)/2.D+00*(HPLATE*RHO(10l )IDVC(lI))/RE**0.5D+00
F(1,2) = F(l,I)*( X(NX-1)/X(NX) )**50OD01

I + CVW*( VW(l) + VW(2) )12.D+00*( X(NX) - X(NX - 1) )/X(NX)**5.0D-01
RETURN
END
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Table A- 1. Data for state relationships used in flow
calculations: temperature (T), density (p), viscosity (ji), and

Prandtl number (Pr) as functions of conserved scalar (Z).

Z T (K) p (kg/m3) I (kg/m-s) Pr

0.0000 298.2 5.9696E-01 1.5573E-05 0.7484
0.0100 685.1 2.5784E-01 3.1761E-05 0.7444
0.0200 1002.1 1.7726E-01 4.2585E-C5 0.7466
0.0300 1228.2 1.4475E-01 4.9860E-05 0.7448
0.0400 1388.1 1.2070E-01 5.5290E-05 0.7605
0.0500 1454.7 1.0348E-01 5.8402E-05 0.7864
0.0600 1492.2 9.0196E-02 6.0575E-05 0.8088
0.0700 1517.7 7.9616E-02 6.2141E-05 0.8258
0.0800 1537.2 7.0993E-02 6.321 IE-05 0.8378
0.0900 1553.2 6.3821E-02 6.3839E-05 0.8460
0.1000 1567.1 5.7741E-02 6.4050E-05 0.8513
0.1100 1580.5 5.2516E-02 6.3883E-05 0.8549
0.1200 1608.6 4.8224E-02 6.3751E-05 0.8616
0.1300 1644.6 4.4299E-02 6.2848E-05 0.8664
0.1400 1681.9 4.0843E-02 6.1308E-05 0.8674
0.1500 1711.6 3.7935E-02 5.9710E-05 0.8643
0.1600 1735.9 3.5437E-02 5.8213E-05 0.8583
0.1700 1757.2 3.3242E-02 5.6813E-05 0.8507
0.1800 1777.1 3.1282E-02 5.5498E-05 0.8418
0.1900 1796.4 2.9512E-02 5.4258E-05 0.8321
0.2000 1816.2 2.7895E-02 5.3092E-05 0.8219
0.2100 1837.5 2.6400E-02 5.2002E-05 0.8113
0.2200 1861.9 2.4998E-02 5.0992E-05 0.8006
0.2300 1892.1 2.3652E-02 5.0092E-05 0.7879
0.2400 1933.3 2.2324E-02 4.9367E-05 0.7790
0.2500 1989.1 2.1016E-02 4.8916E-05 0.7689
0.2600 2045.0 1.9871E-02 4.8576E-05 0.7597
0.2700 2089.0 1.8932E-02 4.8117E-05 0.7510
0.2800 2125.2 1.8114E-02 4.7582E-05 0.7426
0.2900 2159.3 1.7371E-02 4.7034E-05 0.7343
0.3000 2193.1 1.6674E-02 4.6523E-05 0.7262
0.3100 2229.8 1.6005E-02 4.6095E-05 0.7186
0.3200 2273.0 1.5342E-02 4.5806E-05 0.7114
0.3300 2330.0 1.4657E-02 4.5769E-05 0.7048
0.3400 2415.6 1.3895E-02 4.6242E-05 0.6997
0.3500 2541.7 1.3048E-02 4.7426E-05 0.6972
0.3600 2685.4 1.2242E-02 4.8919E-05 0.6969
0.3700 2827.4 1.1538E-02 5.0371E-05 0.6977
0.3800 2961.2 1.0939E-02 5.1719E-05 0.6988
0.3900 3062.0 1.0499E-02 5.2666E-05 0.7002
0.4000 3111.1 1.0236E-02 5.2969E-05 0.7016
0.4100 3119.2 1.0095E-02 5.2751E-05 0.7030
0.4200 3097.5 1.0040E-02 5.2164E-05 0.7042
0.4300 3053.9 1.0048E-02 5.1308E-05 0.7052
0.4400 2997.4 1.0100E-02 5.0313E-05 0.7058
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Table A-1 -- continued

0.4500 2938.2 1.0170E-02 4.9332E-05 0.7063
0.4600 2884.1 1.0236E-02 4.8482E-05 0.7069
0.4700 2838.8 1.0288E-02 4.7819E-05 0.7079
0.4800 2802.1 1.0321E-02 4.7338E-05 0.7092
0.4900 2772.6 1.0340E-02 4.7007E-05 0.7109
0.5000 2748.4 1.0346E-02 4.6788E-05 0.7129
0.5100 2728.1 1,0344E-02 4.6648E-05 0.7152
0.5200 2710.5 1.0336E-02 4.6565E-05 0.7176
0.5300 2694.8 1.0324E-02 4.6520E-05 0.7201
0.5400 2680.3 1.0309E-02 4.6499E-05 0.7227
0.5500 2666.6 1.0293E-02 4.6495E-05 0.7254
0.5600 2653.2 1.0276E-02 4.6497E-05 0.7281
0.5700 2639.7 1.0261E-02 4.6496E-05 0.7309
0.5800 2625.6 1.0247E-02 4.6481E-05 0.7336
0.5900 2610.5 1.0238E-02 4.6442E-05 0.7362
0.6000 2593.5 1.0234E-02 4.6363E-05 0.7387
0.6100 2573.4 1.0240E-02 4.6216E-05 0.7411
0.6200 2548.0 1.0263E-02 4.5959E-05 0.7433
0.6300 2513.0 1.0316E-02 4.5504E-05 0.7451
0.64C3 2459.7 1.0431E-02 4.4671E-05 0.7461
0.6500 2375.5 1.0658E-02 4.3217E-05 0.7460
0.6600 2267.5 1.0997E-02 4.1296E-05 0.7452
0.6700 2159.3 1.1377E-02 3.9400E-05 0.7448
0.6800 2063.1 1.1753E-02 3.7799E-05 0.7454
0.6900 1982.8 1.2096E-02 3.6584E-05 0.7474
0.7000 1917.8 1.2395E-02 3.5741E-05 0.7506
0.7100 1864.9 1.2654E-02 3.5193E-05 0.7550
0.7200 1820.7 1.2881E-02 3.4857E-05 0.7601
0.7300 1782.7 1.3086E-02 3.4669E-05 0.7657
0.7400 1748.9 1.3275E-02 3.4581E-05 0.7718
0.7500 1718.1 1.3454E-02 3.4563E-05 0.7782
0.7600 1689.3 1.3628E-02 3.4590E-05 0.7848
0.7700 1662.0 1.3800E-02 3.4645E-05 0.7916
0.7800 1635.5 1.3972E-02 3.4713E-05 0.7985
0.7900 1609.6 1.4148E-02 3.4781E-05 0.8056
0.8000 1583.8 1.4331E-02 3.4838E-05 0.8127
0.8100 1573.2 1.4384E-02 3.4304E-05 0.8110
0.8200 1562.1 1.4442E-02 3.3771E-05 0.8094
0.8300 1550.1 1.4511E-02 3.3258E-05 0.8083
0.8400 1539.0 1.4588E-02 3.2700E-05 0.8061
0.8500 1532.9 1.4657E-02 3.1937E-05 0.7995
0.8600 1526.4 1.47291E-02 3.1148E-05 0.7927
0.8700 1519.6 1.4806E-02 3.0333E-05 0.7856
0.8800 1512.3 1.4888E-02 2.9491E-05 0.7782
0.8900 1504.4 1.4976E-02 2.8623E-05 0.7706
0.9000 1496.0 1.5070E-02 2.7728E-05 0.7627
0.9100 1486.8 1.5172E-02 2.6807E-05 0.7547
0.9200 1476.8 1.5284E-02 2.5862E-05 0.7467
0.9300 1465.9 1.5406E-02 2.4893E-05 0.7385
0.9400 1453.7 1.5542E-02 2.3906E-05 0.7305
0.9500 1440.2 1.5696E-02 2.2904E-05 0.7225
0.9600 1425.0 1.5872E-02 2.1896E-05 0.7149
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Table A- I -- continued

0.9700 1407.8 1.6075E-02 2.0894E-05 0.7078
0.9800 1388.2 1.6315E-02 1.9914E-05 0.7014
0.9900 1365.8 1.6602E-02 1.8979E-05 0.6960
1.0000 1340.5 1.6946E-02 1.8120E-05 0.6920
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APPENDIX B

SUFFICIENT AND NECESSARY CONDITION FOR SIMILARITY SOLUTIONS

To obtain a sufficient and necessary condition for similarity solutions, the

nonsimilar terms of the right-hand sides of the momentum and mixture fraction

equations, Eqs. (2.30) and (2.38), are examined. First, the nonsimilar term in Eq. (2.30)

is set equal to zero.

f _ = 0 (B.I)

The dimensionless stream function, f, is assumed to consist of two parts using separation

of variables.

f -" X( )H(q) (B.2)

Substituting into Eq. (B. 1), one obtains

XX'(H' 2 - HH") = 0 (B.3)

Three possibilities exist for Eq. (B.3), X = 0, X' = 0, or H'2 - HH" = 0. The condition of

X = 0 leads to trivial solution and is excluded from further consideration. The solution to

H' 2 - HH" = 0 is obtained:
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H = c IEXP(c2il) (B.4)

The boundary conditions, Eq. (2.39), are required to obtain solution to Eq. (B.4). The

boundary conditions are as follows:

X(4)H(O) = fw = A4-12 f Vw(t)d4

where A 2
2 t*Rel/2'

with

H'(0) = 0 H'(-o) = 1 (B.5)

Equation (B.4) subject to the boundary conditions of Eq. (B.5) also leads to a trivial

solution.

Finally, X' = 0 is satisfied if X = constant or vw is proportional to 4-1/2. The

dimensionless stream function is a function of 11 only, implying similarity solutions for

momentum equation.

To complete the necessary condition, the nonsimilar term of Eq. (2.38) is set to

zero. Separation of variables for mixture fraction is employed.

Z- f - Z' =0 (B.6)

Z = Xl(t) HIf(I) (B.7)


